第三章 多维随机变量及其分布(概率论)

第三章 多维随机变量及其分布

3.1二维随机变量及其分布函数

P ( ( X , Y ) ∈ G ) = { ∑ ( x i , y j ) ∈ G p i j , 离 散 型 ( 联 合 分 布 律 ) ∬ G ⋂ D f ( x , y )    d x d y , 连 续 型 ( 联 合 密 度 ) P((X,Y)\in G)=\begin{cases}\begin{aligned}&\sum\limits_{(x_i,y_j)\in G}p_{ij},&离散型(联合分布律)\\ &\iint\limits_{G\bigcap D}f(x,y)\;dxdy,&连续型(联合密度) \end{aligned}\end{cases} P((X,Y)G)=(xi,yj)Gpij,GDf(x,y)dxdy,()()

3.1.1 二维R.V.

  • 分布函数(联合分布函数)

    • 定义 ( X , Y ) (X,Y) (X,Y) 为二维随机变量, ∀ ( x , y ) ∈ R 2 \forall (x,y)\in R^2 (x,y)R2,称 F ( x , y ) = P { X ≤ x , Y ≤ y } \color{red}F(x,y)=P\{X\le x,Y\le y \} F(x,y)=P{Xx,Yy} ( X , Y ) (X,Y) (X,Y) 的分布函数。

    • 解释
      F ( x , y ) = P ( X ≤ x , Y ≤ y ) ⏟ = P ( A ⋂ B ) = P ( A ) ⋅ P ( B ) ≠ P ( X ≤ x ) ⋅ P ( Y ≤ y ) ⏟ .      乘 积 的 概 率      乘 积 的 概 率 \begin{aligned}F(x,y)=&\underbrace{P(X\le x,Y\le y)}=P(A\bigcap B)=P(A)\cdot P(B)\ne &&\underbrace{P(X\le x)\cdot P(Y\le y)}.\\ &\;\;\quad乘积的概率 &&\;\;\qquad乘积的概率 \end{aligned} F(x,y)= P(Xx,Yy)=P(AB)=P(A)P(B)= P(Xx)P(Yy).

    • 矩形区域
      P { x 1 < X ≤ x 2 , y 1 < Y ≤ y 2 } = F ( x 2 , y 2 ) − F ( x 1 , y 2 ) − F ( x 2 , y 1 ) + F ( x 1 , y 1 ) . P\{x_1< X\le x_2,y_1< Y\le y_2 \}=F(x_2,y_2)-F(x_1,y_2)-F(x_2,y_1)+F(x_1,y_1). P{x1<Xx2,y1<Yy2}=F(x2,y2)F(x1,y2)F(x2,y1)+F(x1,y1).

    • 性质

      1. 单调不减:当 x 1 < x 2 x_1<x_2 x1<x2,有 F ( x 1 , y ) ≤ F ( x 2 , y ) F(x_1,y)\le F(x_2,y) F(x1,y)F(x2,y);当 y 1 < y 2 y_1<y_2 y1<y2,有 F ( x , y 1 ) ≤ F ( x , y 2 ) F(x,y_1)\le F(x,y_2) F(x,y1)F(x,y2)
      2. 两侧端点 F ( − ∞ , − ∞ ) = F ( − ∞ , y ) = F ( x , ∞ ) = 0 , F ( + ∞ , − ∞ ) = 1 F(-\infty,-\infty)=F(-\infty,y)=F(x,\infty)=0,F(+\infty,-\infty)=1 F(,)=F(,y)=F(x,)=0,F(+,)=1
      3. 左右连续:对 ∀ x , y ∈ R \forall x,y\in R x,yR,有 F ( x + 0 , y ) = F ( x , y + 0 ) = F ( x , y ) F(x+0,y)=F(x,y+0)=F(x,y) F(x+0,y)=F(x,y+0)=F(x,y)
      4. 非负性:对 ∀ x 1 < x 2 , y 1 < y 2 ∈ R \forall x_1<x_2,y_1<y_2\in R x1<x2,y1<y2R,有 F ( x 2 , y 2 ) − F ( x 1 , y 2 ) − F ( x 2 , y 1 ) + F ( x 1 , y 1 ) ≥ 0 F(x_2,y_2)-F(x_1,y_2)-F(x_2,y_1)+F(x_1,y_1)\ge 0 F(x2,y2)F(x1,y2)F(x2,y1)+F(x1,y1)0

3.1.2 二维离散型R.V.

离散型:取有限个或可数无穷个点对 ( x i , y i ) (x_i,y_i) (xi,yi)

  • 分布律(联合分布律)

    • 定义 P ( X = x i , Y = y i ) = p i j , i , j = 1 , 2 , . . . \color{red}P(X=x_i,Y=y_i)=p_{ij},\qquad i,j=1,2,... P(X=xi,Y=yi)=pij,i,j=1,2,...
    • 性质
      1. p i j ≤ 0 , i , j = 1 , 2 , . . . p_{ij}\le 0,\qquad i,j=1,2,... pij0,i,j=1,2,...
      2. ∑ i , j p i j = 1 \sum\limits_{i,j}p_{ij}=1 i,jpij=1
  • 二维分布函数 F ( x , y ) = ∑ x i ≤ x ∑ y i ≤ y p i j F(x,y)=\sum\limits_{x_i\le x}\sum\limits_{y_i\le y}p_{ij} F(x,y)=xixyiypij

3.1.3 二维连续型R.V.

  • 密度(联合密度)

    • 定义
      F ( x , y ) = ∫ − ∞ x ∫ − ∞ y f ( u , v )    d u d v f ( x , y ) = ∂ 2 F ( x , y ) ∂ x ∂ y \color{red}F(x,y)=\int_{-\infty}^x\int_{-\infty}^yf(u,v)\;dudv\\ \color{red}f(x,y)=\dfrac{\partial^2 F(x,y)}{\partial x\partial y} F(xy)=xyf(u,v)dudvf(x,y)=xy2F(x,y)
      密度函数 f ( x , y ) > 0 f(x,y)>0 f(x,y)>0 的区域为连续性 R . V . ( X , Y ) R.V.(X,Y) R.V.(X,Y) 的取值区域

    • 性质

      1. f ( x , y ) ≥ 0 , ( x , y ) ∈ R 2 f(x,y)\ge 0,(x,y)\in R^2 f(x,y)0,(x,y)R2
      2. ∫ − ∞ + ∞ ∫ − ∞ + ∞ f ( x , y )    d x d y = 1 \int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}f(x,y)\;dxdy=1 ++f(x,y)dxdy=1
  • 知识点:已知联合密度 f ( x , y ) f(x,y) f(x,y) 求概率 P ( ( X , Y ) ∈ G ) P((X,Y)\in G) P((X,Y)G) —— 本质是曲顶柱体体积 V = ∬ D ⋂ G f ( x , y )    d x d y V=\iint\limits_{D\bigcap G} f(x,y)\;dxdy V=DGf(x,y)dxdy

    • ⨀ \color{red}\bigodot 1. 先画 D D D,再画 G G G
    • ⨀ \color{red}\bigodot 2. 画箭头,选择 x / y x/y x/y 积分方向
    • ⨀ \color{red}\bigodot 3. 解释积分上下限

    例题 \color{White}\colorbox{Fuchsia}{例题} :有密度函数 f ( x , y ) = { A y , 0 < y < x < 1 0 , o t h e r s f(x,y)=\begin{cases}\begin{aligned}&Ay,&0<y<x<1 \\&0,&others \end{aligned}\end{cases} f(x,y)={Ay,0,0<y<x<1others

    1. A A A


      1 = ∫ − ∞ + ∞ ∫ − ∞ + ∞ f ( x , y )    d x d y = ∫ 0 1 d x ∫ 0 x A y    d y = A 6 ∴ A = 6 1=\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty} f(x,y)\;dxdy=\int_0^1dx\int_0^x Ay\;dy=\dfrac{A}{6}\\ \therefore A=6 1=++f(x,y)dxdy=01dx0xAydy=6AA=6

    2. P ( X ≤ 1 2 , Y ≤ 1 4 ) P(X\le \dfrac{1}{2},Y\le \dfrac{1}{4}) P(X21,Y41)


      P ( X ≤ 1 2 , Y ≤ 1 4 ) = ∫ − ∞ 1 2 d x ∫ − ∞ 1 4 f ( x , y )    d y = ∫ 0 1 4 d y ∫ y 1 2 6 y    d y = 1 16 P(X\le \dfrac{1}{2},Y\le \dfrac{1}{4})=\int_{-\infty}^{1\over 2}dx\int_{-\infty}^{1\over 4} f(x,y)\;dy=\int_0^{1\over 4}dy\int_y^{1\over 2} 6y\;dy=\dfrac{1}{16} P(X21,Y41)=21dx41f(x,y)dy=041dyy216ydy=161

    3. P ( X + Y ≤ 1 2 ) , P ( X + Y ≤ 3 2 ) P(X+Y\le \dfrac{1}{2}),P(X+Y\le \dfrac{3}{2}) P(X+Y21),P(X+Y23)


      P ( X + Y ≤ 1 2 ) = ∫ 0 1 4 d y ∫ y 1 2 − y 6 y    d x = ∫ 0 1 4 6 y ( 1 2 − 2 y )    d y = 1 32  注意对x积分时内部是对y的函数 P ( X + Y ≤ 3 2 ) = ∫ 0 3 4 d x ∫ 0 x 6 y    d y + ∫ 3 4 1 d x ∫ 0 3 2 − x 6 y    d y = 23 32 \begin{aligned}&P(X+Y\le \dfrac{1}{2})=\int_0^{1\over 4}dy\int_y^{{1\over 2}-y} 6y\;dx= \int_0^{1\over 4}6y({1\over 2}-2y)\;dy =\dfrac{1}{32} \color{red}\text{ 注意对x积分时内部是对y的函数}\\ &P(X+Y\le \dfrac{3}{2})= \int_0^{3\over 4}dx\int_0^x 6y\;dy+\int_{3\over 4}^1dx\int_0^{{3\over 2}-x}6y\;dy=\dfrac{23}{32} \end{aligned} P(X+Y21)=041dyy21y6ydx=0416y(212y)dy=321 注意对x积分时内部是对y的函数P(X+Y23)=043dx0x6ydy+431dx023x6ydy=3223
      在这里插入图片描述

  • 二维均匀分布

    • 解释:等可能的落入区域 G G G 的随机点。
    • 定义 f ( x , y ) = { 1 S ( G ) , ( x , y ) ∈ G 0 , o t h e r s . f(x,y)=\begin{cases}\begin{aligned}&\dfrac{1}{S(G)},&(x,y)\in G\\&0,&others. \end{aligned}\end{cases} f(x,y)=S(G)1,0(x,y)Gothers.,其中 S ( G ) S(G) S(G) G G G 的面积
    • 表示 ( X , Y ) ∼ U ( G ) (X,Y)\sim U(G) (X,Y)U(G)
    • 结论:若 ( X , Y ) ∼ U ( G ) (X,Y)\sim U(G) (X,Y)U(G),则 P ( ( X , Y ) ∈ G ) = S D ⋂ G S D P((X,Y)\in G)=\dfrac{S_{D\bigcap G}}{S_D} P((X,Y)G)=SDSDG

3.2 边缘分布与R.V.独立性

3.2.1 边缘分布函数与R.V.独立性

  • 边缘分布函数
    F X ( x ) ≐ F ( x , + ∞ ) = P { X ≤ x , Y ≤ + ∞ } = F ( x , + ∞ ) F Y ( y ) ≐ F ( + ∞ , y ) = P { X ≤ + ∞ , Y ≤ y } = F ( + ∞ , y ) \color{red}F_X(x)\doteq F(x,+\infty)=P\{X\le x,Y\le +\infty \}=F(x,+\infty)\\ \color{red}F_Y(y)\doteq F(+\infty,y)=P\{X\le +\infty,Y\le y\}=F(+\infty,y) FX(x)F(x,+)=P{Xx,Y+}=F(x,+)FY(y)F(+,y)=P{X+,Yy}=F(+,y)

  • 独立性

    • 定义:对 ∀ x , y \forall x,y x,y,有 F ( x , y ) = F X ( x ) F Y ( y ) \color{red}F(x,y)=F_X(x)F_Y(y) F(x,y)=FX(x)FY(y),则称 X X X Y Y Y 相互独立。此时通过边缘分布可得到二位分布函数。
    • 定理:设随机变量 X , Y X,Y X,Y 相互独立,且 g ( x ) , h ( y ) g(x),h(y) g(x),h(y) 分别是 x , y x,y x,y 的连续函数,则 X 1 = g ( X ) X_1=g(X) X1=g(X) Y 1 = h ( Y ) Y_1=h(Y) Y1=h(Y) 也相互独立。
    • 注意
      • 交事件的概率: F ( x , y ) = P ( X ≤ x , Y ≤ y ) F(x,y)=P(X\le x,Y\le y) F(x,y)=P(Xx,Yy)
      • 概率的乘积: F X ( x ) ⋅ F Y ( y ) = P ( X ≤ x ) ⋅ P ( Y ≤ y ) F_X(x)\cdot F_Y(y)=P(X\le x)\cdot P(Y\le y) FX(x)FY(y)=P(Xx)P(Yy)

3.2.2 离散型边缘分布

  • 边缘概率分布(边缘分布)

    • 定义
      p i ⋅ = P ( X = x i ) = ∑ j p i j , i = 1 , 2 , . . . p ⋅ j = P ( Y = y j ) = ∑ i p i j , j = 1 , 2 , . . . \color{red}p_{i\cdot}=P(X=x_i)=\sum\limits_{j}p_{ij},\qquad i=1,2,...\\ \color{red}p_{\cdot j}=P(Y=y_j)=\sum\limits_{i}p_{ij},\qquad j=1,2,...\\ pi=P(X=xi)=jpij,i=1,2,...pj=P(Y=yj)=ipij,j=1,2,...

    • 定理 X X X Y Y Y 独立    ⟺    p i j = p i ⋅ ⋅ p ⋅ j {\color{red}\iff} p_{ij}=p_{i\cdot}\cdot p_{\cdot j} pij=pipj

    例题 \color{White}\colorbox{Fuchsia}{例题} :二维概率分布 ( X , Y ) (X,Y) (X,Y) 如图,若事件 ( X = 1 ) (X=1) (X=1) ( X + Y = 1 ) (X+Y=1) (X+Y=1) 相互独立,求 a , b a,b a,b 并判断 X , Y X,Y X,Y 之间的独立性。

在这里插入图片描述
解:
P ( X = 1 ) P ( X + Y = 1 ) = P ( X = 1 , X + Y = 1 ) = P ( X = 1 , Y = 0 ) 即 ( b + 0.1 ) ( a + b ) = 0.1 ∵ a + b = 0.5 ∴ a = 0.4 , b = 0.1 也 发 现 X , Y 独 立 P(X=1)P(X+Y=1)=P(X=1,X+Y=1)=P(X=1,Y=0)\\ 即(b+0.1)(a+b)=0.1\\ \because a+b=0.5\therefore a=0.4,b=0.1\\ 也发现X,Y独立 P(X=1)P(X+Y=1)=P(X=1,X+Y=1)=P(X=1,Y=0)(b+0.1)(a+b)=0.1a+b=0.5a=0.4,b=0.1X,Y

3.2.3 连续性边缘分布

  • 边缘密度函数

    • 定义
      f X ( x ) = ∫ − ∞ + ∞ f ( x , y ) d y , − ∞ < x < + ∞ f Y ( y ) = ∫ − ∞ + ∞ f ( x , y ) d x , − ∞ < y < + ∞ \color{red}f_X(x)=\int_{-\infty}^{+\infty} f(x,y)dy,\qquad -\infty<x<+\infty\\ \color{red}f_Y(y)=\int_{-\infty}^{+\infty} f(x,y)dx,\qquad -\infty<y<+\infty\\ fX(x)=+f(x,y)dy,<x<+fY(y)=+f(x,y)dx,<y<+

    • 定理 X X X Y Y Y 独立    ⟺    f ( x , y ) = f X ( x ) f Y ( y ) {\color{red}\iff} f(x,y)=f_X(x)f_Y(y) f(x,y)=fX(x)fY(y) 在三个密度函数的公共连续点处成立。

  • 知识点:已知联合密度 f ( x , y ) f(x,y) f(x,y)边缘密度

    • ⨀ \color{red}\bigodot 1. 画图,画 D D D
    • ⨀ \color{red}\bigodot 2. 对二元函数的一元积分
    • ⨀ \color{red}\bigodot 3. 判断定义域

    f ( x , y ) { ⟶ 对 y 积 分 f X ( x ) = { ∫ c ( x ) d ( x ) f ( x , y )    d y , x ∈ [ a , b ] 0 , o t h e r s ⟶ 对 x 积 分 f Y ( y ) = { ∫ a ( y ) b ( y ) f ( x , y )    d x , y ∈ [ c , d ] 0 , o t h e r s f(x,y)\begin{cases}\begin{aligned}&\overset{对y积分}{\longrightarrow}f_X(x)=\begin{cases}&\int_{c(x)}^{d(x)}f(x,y)\;dy,&\color{red}x\in[a,b]\\&0,&others \end{cases} \\&\overset{对x积分}{\longrightarrow}f_Y(y)=\begin{cases}&\int_{a(y)}^{b(y)}f(x,y)\;dx,&\color{red}y\in[c,d]\\&0,&others\end{cases} \end{aligned}\end{cases} f(x,y)yfX(x)={c(x)d(x)f(x,y)dy,0,x[a,b]othersxfY(y)={a(y)b(y)f(x,y)dx,0,y[c,d]others

3.3 条件分布与条件概率

  • 条件分布函数 F X ∣ Y ( x ∣ y ) = P ( X ≤ x ∣ Y = y ) , x ∈ R {\color{red}F_{X|Y}(x|y)=P(X\le x|Y=y)},\qquad x\in R FXY(xy)=P(XxY=y),xR Y = y Y=y Y=y 条件下 X X X 的条件分布函数

    X , Y X,Y X,Y 不独立时,条件分布函数是研究 X X X Y Y Y相互关系的工具

3.3.1 离散型R.V.的条件分布

  • 条件分布律

    • 定义:对于固定的 j j j,有 p ⋅ j > 0 p_{\cdot j}>0 pj>0,称 P ( X = x i ∣ Y = y i ) = p i j p ⋅ j {\color{red}P(X=x_i|Y=y_i)=\dfrac{p_{ij}}{p_{\cdot j}}} P(X=xiY=yi)=pjpij Y = y j Y=y_j Y=yj 的条件下 X X X 的条件分布律。 Y Y Y 的条件分布律同理。
    • 性质
      1. P ( X = x i ∣ Y = y i ) ≥ 0 , i = 1 , 2 , . . P(X=x_i|Y=y_i)\ge 0,\quad i = 1,2,.. P(X=xiY=yi)0,i=1,2,..
      2. ∑ i P ( X = x i ∣ Y = y i ) = ∑ i p i j p ⋅ j = 1 \sum\limits_{i} P(X=x_i|Y=y_i)=\sum\limits_{i}\dfrac{p_{ij}}{p_{\cdot j}}=1 iP(X=xiY=yi)=ipjpij=1
  • 三律关系

    联合分布律边缘分布律条件分布律
    P ( X = x i , Y = y j ) = p i j P(X=x_i,Y=y_j)=p_{ij} P(X=xi,Y=yj)=pij P ( X = x i ) = ∑ j = 1 ∞ p i j = p i ⋅ P(X=x_i)=\sum\limits_{j=1}^\infty p_{ij}=p_{i\cdot} P(X=xi)=j=1pij=pi$P(Y=y_j
    P ( A i B j ) P(A_iB_j) P(AiBj) P ( A i ) P(A_i) P(Ai)已知 X = x i X=x_i X=xi 时,$P(B_j
    1. 已知联合分布律,可得到边缘分布律,进而得到条件分布律

    2. 通过边缘分布律和条件分布律可逆推出联合分布律

      例题 \color{White}\colorbox{Fuchsia}{例题} :从1,2,3中任意取一个数 X X X,在从1 X X X 中任意取一个数 Y Y Y,求 Y Y Y 的分布律

      解:
      已 知 P ( X = x i ) = 1 3 , P ( Y = j ∣ X = i ) = 1 i 则 联 合 分 布 律 P ( X = i , Y = j ) = P ( X = i ) ⋅ P ( Y = j ∣ X = i ) = 1 3 i , ( i = 1 , 2 , 3 , j = 1 , 2 , i ) { P ( Y = 1 ) = 1 3 + 1 6 + 1 9 = 11 18 P ( Y = 2 ) = 1 6 + 1 9 = 5 18 P ( Y = 1 ) = 1 9 已知 P(X=x_i)=\dfrac{1}{3},P(Y=j|X=i)=\dfrac{1}{i}\\ 则联合分布律P(X=i,Y=j)=P(X=i)\cdot P(Y=j|X=i)=\dfrac{1}{3i},\qquad (i=1,2,3,j=1,2,i)\\ \begin{aligned}\begin{cases}&P(Y=1)=\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{9}=\dfrac{11}{18} \\ &P(Y=2)=\dfrac{1}{6}+\dfrac{1}{9}=\dfrac{5}{18} \\ &P(Y=1)=\dfrac{1}{9}\end{cases} \end{aligned} P(X=xi)=31,P(Y=jX=i)=i1P(X=i,Y=j)=P(X=i)P(Y=jX=i)=3i1,(i=1,2,3,j=1,2,i)P(Y=1)=31+61+91=1811P(Y=2)=61+91=185P(Y=1)=91

3.3.2 连续性R.V.的条件密度函数

  • 条件分布函数

    • 定义:对任意 ϵ > 0 \epsilon>0 ϵ>0,若极限 lim ⁡ ϵ ⟶ 0 + P ( X ≤ x ∣ y − ϵ < Y ≤ y + ϵ ) \lim\limits_{\epsilon\longrightarrow 0^+} P(X\le x|y-\epsilon< Y\le y+\epsilon) ϵ0+limP(Xxyϵ<Yy+ϵ) 存在,则称此极限为条件 Y = y Y=y Y=y X X X 的条件分布函数,记为
      F X ∣ Y ( x ∣ y ) = P ( X ≤ x ∣ Y = y ) = lim ⁡ ϵ ⟶ 0 + P ( X ≤ x ∣ y − ϵ < Y ≤ y + ϵ ) = lim ⁡ ϵ ⟶ 0 + P ( X ≤ x , y − ϵ < Y ≤ y + ϵ ) P ( y − ϵ < Y ≤ y + ϵ ) \color{red}F_{X|Y}(x|y)=P(X\le x|Y=y)=\lim\limits_{\epsilon\longrightarrow 0^+} P(X\le x|y-\epsilon< Y\le y+\epsilon)=\lim\limits_{\epsilon\longrightarrow 0^+}\dfrac{ P(X\le x,y-\epsilon< Y\le y+\epsilon)}{P(y-\epsilon< Y\le y+\epsilon)} FXY(xy)=P(XxY=y)=ϵ0+limP(Xxyϵ<Yy+ϵ)=ϵ0+limP(yϵ<Yy+ϵ)P(Xx,yϵ<Yy+ϵ)

    • 定理:二维随机变量 ( X , Y ) (X,Y) (X,Y) f ( x , y ) f(x,y) f(x,y),则
      F X ∣ Y ( x ∣ y ) = ∂ F ( x , y ) ∂ y F Y ′ ( y ) = ∫ − ∞ x f ( u , y ) f Y ( y ) d u , x ∈ R F Y ∣ X ( y ∣ x ) = ∂ F ( x , y ) ∂ x F X ′ ( x ) = ∫ − ∞ y f ( x , v ) f X ( x ) d v , y ∈ R F_{X|Y}(x|y)= \dfrac{\frac{\partial F(x,y)}{\partial y}}{F'_Y(y)} =\int_{-\infty}^x \dfrac{f(u,y)}{f_Y(y)}du,\quad x\in R\\ F_{Y|X}(y|x)= \dfrac{\frac{\partial F(x,y)}{\partial x}}{F'_X(x)} =\int_{-\infty}^y \dfrac{f(x,v)}{f_X(x)}dv,\quad y\in R\\ FXY(xy)=FY(y)yF(x,y)=xfY(y)f(u,y)du,xRFYX(yx)=FX(x)xF(x,y)=yfX(x)f(x,v)dv,yR

  • 条件密度:条件密度等于联合密度除以边缘密度
    f X ∣ Y ( x ∣ y ) = ∂ F X ∣ Y ( x ∣ y ) ∂ x = f ( x , y ) f Y ( y ) f Y ∣ X ( y ∣ x ) = ∂ F Y ∣ X ( y ∣ x ) ∂ y = f ( x , y ) f X ( x ) \color{red}f_{X|Y}(x|y)=\dfrac{\partial F_{X|Y}(x|y)}{\partial x}=\dfrac{f(x,y)}{f_Y(y)}\\ \color{red}f_{Y|X}(y|x)=\dfrac{\partial F_{Y|X}(y|x)}{\partial y}=\dfrac{f(x,y)}{f_X(x)}\\ fXY(xy)=xFXY(xy)=fY(y)f(x,y)fYX(yx)=yFYX(yx)=fX(x)f(x,y)

  • 知识点:计算 Y = y Y=y Y=y 条件下 X X X 的概率

    • ⨀ \color{red}\bigodot 1. 已知 f ( x , y ) = { g ( x , y ) , ( x , y ) ∈ D 0 , o t h e r s f(x,y)=\begin{cases}\begin{aligned}&g(x,y),&&(x,y)\in D\\&0,&&others \end{aligned}\end{cases} f(x,y)={g(x,y),0,(x,y)Dothers
    • ⨀ \color{red}\bigodot 2. 则边缘密度 f X ( x ) = { ∫ c ( x ) d ( x ) f ( x , y ) d y , x ∈ [ a , b ] 0 , o t h e r s \color{fuchsia}f_X(x)=\begin{cases}\begin{aligned}&\int_{c(x)}^{d(x)}f(x,y)dy ,&&x\in [a,b]\\&0,&&others \end{aligned}\end{cases} fX(x)=c(x)d(x)f(x,y)dy,0,x[a,b]others
    • ⨀ \color{red}\bigodot 3. 故得到当 y ∈ [ c , d ] y\in[c,d] y[c,d] 时,条件密度 f X ∣ Y ( x ∣ y ) = { f ( x , y ) f Y ( y ) , x ∈ [ a ( y ) , b ( y ) ] 0 , o t h e r s \color{green}f_{X|Y}(x|y)=\begin{cases}\begin{aligned}&\dfrac{f(x,y)}{f_Y(y)} ,&&x\in [a(y),b(y)]\\&0,&&others \end{aligned}\end{cases} fXY(xy)=fY(y)f(x,y),0,x[a(y),b(y)]others
    • ⨀ \color{red}\bigodot 4. 求得概率 P ( X ∈ G ∣ Y = y 0 ) P(X\in G|Y=y_0) P(XGY=y0),此时

    X n e w ∼ f X ∣ Y ( x ∣ y ) = { f ( x , y 0 ) f Y ( y 0 ) , x ∈ [ a ( y 0 ) , b ( y 0 ) ] 0 , o t h e r s P ( X ∈ G ∣ Y = y 0 ) = ∫ G ⋂ D ( x ) f X ∣ Y ( x ∣ y 0 ) d x \color{blue}X^{new}\sim f_{X|Y}(x|y)=\begin{cases}\begin{aligned}&\dfrac{f(x,y_0)}{f_Y(y_0)},&&\color{red}x\in [a(y_0),b(y_0)] \\&0,&&others \end{aligned}\end{cases}\\ P(X\in G|Y=y_0)=\int\limits_{\color{red}G\bigcap D(x)} f_{X|Y}(x|y_0)dx XnewfXY(xy)=fY(y0)f(x,y0),0,x[a(y0),b(y0)]othersP(XGY=y0)=GD(x)fXY(xy0)dx

    例题 \color{White}\colorbox{Fuchsia}{例题} :随机变量 ( X , Y ) (X,Y) (X,Y) 的概率密度为 f ( x , y ) = { 1 , ∣ y ∣ < x , 0 < x < 1 0 , o t h e r s f(x,y)=\begin{cases}\begin{aligned}&1,&&|y|<x,0<x<1\\ &0,&&others\end{aligned}\end{cases} f(x,y)={1,0,y<x,0<x<1others
    在这里插入图片描述

    1. f X ( x ) , f Y ( y ) f_X(x),f_Y(y) fX(x),fY(y)

      解:
      f X ( x ) = ∫ − ∞ + ∞ f ( x , y ) d y = { ∫ − x x d y = 2 x , 0 < x < 1 0 , o t h e r s f_X(x)=\int_{-\infty}^{+\infty}f(x,y)dy=\begin{cases}\begin{aligned}&\int_{-x}^xdy=2x,&&0<x<1 \\ &0,&&others\end{aligned}\end{cases}\\ fX(x)=+f(x,y)dy=xxdy=2x,0,0<x<1others

      f Y ( y ) = ∫ − ∞ + ∞ f ( x , y ) d x = { ∫ y 1 d x = 1 − y , 0 ≤ y < 1 ∫ − y 1 d x = 1 + y , − 1 ≤ y < 0 0 , o t h e r s = { 1 − ∣ y ∣ , ∣ y ∣ < 1 0 , o t h e r s f_Y(y)=\int_{-\infty}^{+\infty}f(x,y)dx=\begin{cases}\begin{aligned}&\int_{y}^1dx=1-y,&&0\le y<1 \\&\int_{-y}^1dx=1+y,&&-1\le y< 0\\&0,&&others\end{aligned}\end{cases}=\begin{cases}1-|y|,|y|<1\\0,others \end{cases} fY(y)=+f(x,y)dx=y1dx=1y,y1dx=1+y,0,0y<11y<0others={1y,y<10,others

    2. f X ∣ Y ( x ∣ y ) , f Y ∣ X ( y ∣ x ) f_{X|Y}(x|y),f_{Y|X}(y|x) fXY(xy),fYX(yx)

      解:
      当 ∣ y ∣ < 1 时 f X ∣ Y ( x ∣ y ) = f ( x , y ) f Y ( y ) = { 1 1 − ∣ y ∣ , ∣ y ∣ < x < 1 0 , o t h e r s 当 0 < y < 1 时 f Y ∣ X ( y ∣ x ) = f ( x , y ) f X ( x ) = { 1 2 x , ∣ y ∣ < x 0 , o t h e r s \begin{aligned}&当|y|<1时\\ & f_{X|Y}(x|y)=\dfrac{f(x,y)}{f_Y(y)}=\begin{cases}&\dfrac{1}{1-|y|},&|y|<x<1\\&0,&others \end{cases}\\ &当0<y<1时\\ & f_{Y|X}(y|x)=\dfrac{f(x,y)}{f_X(x)}=\begin{cases}&\dfrac{1}{2x},&|y|<x\\&0,&others \end{cases}\end{aligned} y<1fXY(xy)=fY(y)f(x,y)=1y1,0,y<x<1others0<y<1fYX(yx)=fX(x)f(x,y)=2x1,0,y<xothers

    3. P { Y > 1 4 ∣ X = 1 2 } P\{Y>\dfrac{1}{4}|X=\dfrac{1}{2}\} P{Y>41X=21}
      当 x = 1 2 时 , f Y ∣ X ( y ∣ 1 2 ) = { 1 , ∣ y ∣ < 1 2 0 , o t h e r s P { Y > 1 4 ∣ X = 1 2 } = ∫ 1 4 1 2 1    d y = 1 4 \begin{aligned}&当x=\dfrac{1}{2}时, f_{Y|X}(y|\dfrac{1}{2})=\begin{cases}1,\quad|y|<\dfrac{1}{2}\\0,\quad others \end{cases}\\ &P\{Y>\dfrac{1}{4}|X=\dfrac{1}{2}\}=\int_{1\over 4}^{1\over 2}1\;dy=\dfrac{1}{4} \end{aligned} x=21fYX(y21)=1,y<210,othersP{Y>41X=21}=41211dy=41

3.4 二维随机变量函数的分布

  • 二维离散型随机变量函数:若 P { X = x i , Y = y i } = p i j P\{X=x_i,Y=y_i\}=p_{ij} P{X=xi,Y=yi}=pij,则 Z = g ( X , Y ) Z=g(X,Y) Z=g(X,Y) 有分布律 P ( Z = z k ) = ∑ g ( x i , y j ) = z k p i j \color{red}P(Z=z_k)=\sum\limits_{g(x_i,y_j)=z_k}p_{ij} P(Z=zk)=g(xi,yj)=zkpij

  • 二维连续型随机变量函数 Z = g ( X , Y ) Z=g(X,Y) Z=g(X,Y) 是随机变量, f ( x , y ) f(x,y) f(x,y) 一般定义域简洁(例如矩形)

    • 求随机变量函数 Z = g ( X , Y ) Z=g(X,Y) Z=g(X,Y)密度函数的一般方法

      • ⨀ \color{red}\bigodot 1.确定 Z Z Z 的取值范围 R ( Z ) R(Z) R(Z)

      • ⨀ \color{red}\bigodot 2.求 Z Z Z 的分布函数,对任意 z ∈ R ( Z ) z\in R(Z) zR(Z),先求 Z Z Z 的分布函数
        F Z ( z ) = P { Z ≤ z } = P { g ( X , Y ) ≤ z } = P { ( X , Y ) ∈ G ( z ) } = ∫ ( x , y ) ∈ G ( z ) ⋂ D f ( x , y )    d x d y \color{red}F_Z(z)=P\{Z\le z\}=P\{g(X,Y)\le z\}=P\{(X,Y)\in G(z)\}=\int\limits_{(x,y)\in G(z)\bigcap D}f(x,y)\;dxdy FZ(z)=P{Zz}=P{g(X,Y)z}=P{(X,Y)G(z)}=(x,y)G(z)Df(x,y)dxdy

      • ⨀ \color{red}\bigodot 3.再求密度 f Z ( z ) = { F Z ′ ( z ) , z ∈ R ( Z ) 0 , z ∉ R ( Z ) f_Z(z)=\begin{cases}\begin{aligned}&\color{red}F_Z'(z),&z\in R(Z)\\ &0,&z\notin R(Z) \end{aligned}\end{cases} fZ(z)={FZ(z),0,zR(Z)z/R(Z)

      注意事项:

      1. 先画 ( x , y ) (x,y) (x,y) 定义域 D D D,再画 G ( z ) G(z) G(z)一簇曲线),考虑 G ( z ) ⋂ D G(z)\bigcap D G(z)D 的形式
      2. 解释积分限,与 z z z 有关
    • 例题 \color{White}\colorbox{Fuchsia}{例题} :已知 ( X , Y ) (X,Y) (X,Y) 有密度函数 f ( x , y ) = { x y , 0 ≤ x ≤ 2 , 0 ≤ y ≤ 1 0 , o t h e r s f(x,y)=\begin{cases}\begin{aligned}&xy,&0\le x\le 2,0\le y\le 1\\ &0,&others \end{aligned}\end{cases} f(x,y)={xy,0,0x2,0y1others,求 Z = X Y Z=XY Z=XY 的密度函数。

      解:在这里插入图片描述
      易 得 R ( Z ) = [ 0 , 2 ] ; 对 于 ∀ z ∈ [ 0 , 2 ] , 有 F Z ( z ) = P ( Z ≤ z ) = P ( X Y ≤ Z ) . 当 z ∈ [ 0 , 2 ] 时 , F Z ( z ) = ∬ D ⋂ G f ( x , y )    d x d y = ∫ 0 z d x ∫ 0 1 x y d y + ∫ z 2 d x ∫ 0 z x x y d y = z 2 4 + z 2 2 ( ln ⁡ 2 − ln ⁡ z ) ; 当 y ∈ ( 2 , + ∞ ) 时 , F Z ( z ) = 1 ; 当 y ∈ ( − ∞ , 0 ) 时 , F Z ( z ) = 0. 从 而 f Z ( z ) = F Z ′ ( z ) = { z ( ln ⁡ 2 − ln ⁡ z ) , 0 ≤ z ≤ 2 0 , o t h e r s \begin{aligned}&易得R(Z)=[0,2];&&对于\forall z\in[0,2], 有F_Z(z)=P(Z\le z)=P(XY\le Z).\\ &当z\in[0,2]时, &&F_Z(z)=\iint\limits_{D\bigcap G}f(x,y)\;dxdy = \int_0^zdx\int_0^1xydy+\int_z^2dx\int_0^\dfrac{z}{x}xydy = \dfrac{z^2}{4}+\dfrac{z^2}{2}(\ln2-\ln z);\\ &当y\in(2,+\infty)时, &&F_Z(z)= 1;\\ &当y\in(-\infty,0)时, &&F_Z(z)= 0.\\ \end{aligned}\\ 从而f_Z(z)=F_Z'(z) =\begin{cases}z(\ln2-\ln z),0\le z\le2\\0,others \end{cases} R(Z)=[0,2];z[0,2],y(2,+),y(,0),z[0,2],FZ(z)=P(Zz)=P(XYZ).FZ(z)=DGf(x,y)dxdy=0zdx01xydy+z2dx0xzxydy=4z2+2z2(ln2lnz);FZ(z)=1;FZ(z)=0.fZ(z)=FZ(z)={z(ln2lnz),0z20,others

  • 离散型 + 连续性 X X X 为离散型随机变量, Y Y Y 为连续型随机变量,求 Z = X Y Z=XY Z=XY 的密度
    F Z ( z ) = ∑ i ∈ X P ( X i ) P ( Y ∣ X i ) \color{red}F_Z(z)=\sum\limits_{i\in X} P(X_i)P(Y|X_i) FZ(z)=iXP(Xi)P(YXi)

  • 卷积公式(适用于 Z = X ± Y Z=X\pm Y Z=X±Y):二维连续性随机变量 ( X , Y ) (X,Y) (X,Y) 有联合密度 f ( x , y ) f(x,y) f(x,y),变量函数 Z = X + Y Z=X+Y Z=X+Y,则 Z Z Z 的密度函数为
    f Z ( z ) = ∫ − ∞ + ∞ f ( x , z − x )    d x = ∫ − ∞ + ∞ f ( z − y , y )    d y \color{red}f_Z(z)=\int_{-\infty}^{+\infty} f(x,z-x)\;dx=\int_{-\infty}^{+\infty} f(z-y,y)\;dy fZ(z)=+f(x,zx)dx=+f(zy,y)dy
    特别地,当 X X X Y Y Y 相互独立时,有
    f Z ( z ) = ∫ − ∞ + ∞ f X ( x ) f Y ( z − x )    d x = ∫ − ∞ + ∞ f X ( z − y ) f Y ( y )    d y \color{red}f_Z(z)=\int_{-\infty}^{+\infty} f_X(x)f_Y(z-x)\;dx=\int_{-\infty}^{+\infty} f_X(z-y)f_Y(y)\;dy fZ(z)=+fX(x)fY(zx)dx=+fX(zy)fY(y)dy

    • 证明

    F Z ( z ) = P { Z ≤ z } = P { X + Y ≤ z } = ∬ x + y ≤ z f ( x , y )    d x d y = ∫ − ∞ + ∞ d x ∫ − ∞ z − x f ( x , y )    d y 令 u = y + x , 则 d y = d u , 故 F Z ( z ) = ∫ − ∞ + ∞ d x ∫ − ∞ z f ( x , u − x )    d u = ∫ − ∞ z [ ∫ − ∞ + ∞ f ( x , u − x ) d x ] d u 从 而 f Z ( z ) = F Z ′ ( z ) = ∫ − ∞ + ∞ f ( x , z − x ) d x \begin{aligned}&F_Z(z)=P\{Z\le z\}=P\{X+Y\le z\}=\iint\limits_{x+y\le z}f(x,y)\;dxdy=\int_{-\infty}^{+\infty}dx\int_{-\infty}^{z-x}f(x,y)\;dy\\ &令u=y+x,则dy=du,故 \\ &F_Z(z)=\int_{-\infty}^{+\infty}dx\int_{-\infty}^{z}f(x,u-x)\;du=\int_{-\infty}^z\left[\int_{-\infty}^{+\infty}f(x,u-x)dx \right]du \\ &从而f_Z(z)=F'_Z(z)=\int_{-\infty}^{+\infty} f(x,z-x)dx \end{aligned} FZ(z)=P{Zz}=P{X+Yz}=x+yzf(x,y)dxdy=+dxzxf(x,y)dyu=y+x,dy=du,FZ(z)=+dxzf(x,ux)du=z[+f(x,ux)dx]dufZ(z)=FZ(z)=+f(x,zx)dx

    • 例题 \color{White}\colorbox{Fuchsia}{例题} :已知 ( X , Y ) (X,Y) (X,Y) 有密度函数 f ( x , y ) = { 2 − x − y , 0 < x , y < 1 0 , o t h e r s f(x,y)=\begin{cases}\begin{aligned}&2-x-y,&0<x,y< 1\\ &0,&others \end{aligned}\end{cases} f(x,y)={2xy,0,0<x,y<1others,求 Z = X + Y Z=X+Y Z=X+Y 的密度函数。

      解:
      在这里插入图片描述

      R ( Z ) = ( 0 , 2 ) , 对 ∀ 0 < z < 2 , 有 f Z ( z ) = ∫ ∞ + ∞ f ( x , z − x )    d x . 使 被 积 函 数 f ( x , z − x ) 非 零 , 需 满 足 { 0 < x < 1 0 < z − x < 1 , 即 { 0 < x < 1 x < z < 1 + x 当 0 < z < 1 时 , f Z ( z ) = ∫ 0 z ( 2 − z ) d x = z ( 2 − z ) 当 1 < z < 2 时 , f Z ( z ) = ∫ z − 1 1 ( 2 − z ) d x = ( 2 − z ) 2 f Z ( z ) = { z ( 2 − z ) , 0 < z < 1 ( 2 − z ) 2 , 1 < z < 2 0 , o t h e r s \begin{aligned}&R(Z)=(0,2),对\forall 0<z<2,有f_Z(z)=\int_{\infty}^{+\infty}f(x,z-x)\;dx.\\ &使被积函数f(x,z-x)非零,需满足\color{red}\begin{cases}0<x<1\\0<z-x<1\end{cases},即\begin{cases}0<x<1\\x<z<1+x\end{cases}\\ &当0<z<1时,f_Z(z)=\int_0^z(2-z)dx=z(2-z)\\ &当1<z<2时,f_Z(z)=\int_{z-1}^1 (2-z)dx=(2-z)^2\\ &f_Z(z)=\begin{cases}z(2-z),0<z<1 \\(2-z)^2,1<z<2\\0,others\end{cases} \end{aligned} R(Z)=(0,2),0<z<2,fZ(z)=+f(x,zx)dx.使f(x,zx),{0<x<10<zx<1,{0<x<1x<z<1+x0<z<1fZ(z)=0z(2z)dx=z(2z)1<z<2fZ(z)=z11(2z)dx=(2z)2fZ(z)=z(2z),0<z<1(2z)2,1<z<20,others

    • 常见分布可加性( n n n 维随机变量)

      • 二项分布:若 X i X_i Xi 之间相互独立,且 X i ∼ B ( n i , p ) , i = 1 , 2 , . . . , n X_i\sim B(n_i,p),i=1,2,...,n XiB(ni,p),i=1,2,...,n,则 X 1 + X 2 + . . . X n ∼ B ( ∑ i = 1 n n i , p ) \color{red}X_1+X_2+...X_n\sim B(\sum\limits_{i=1}^n n_i,p) X1+X2+...XnB(i=1nni,p)

        证明:离散型 Z = X + Y Z=X+Y Z=X+Y P ( Z = k ) = ∑ i = 0 k P ( X = i , Y = k − i ) = ∑ i = 0 k P ( X = i ) P ( Y = k − i ) P(Z=k)=\sum\limits_{i=0}^k P(X=i,Y=k-i)=\sum\limits_{i=0}^k P(X=i)P(Y=k-i) P(Z=k)=i=0kP(X=i,Y=ki)=i=0kP(X=i)P(Y=ki)

      • 泊松分布:若 X i X_i Xi 之间相互独立,且 X i ∼ P ( λ i ) , i = 1 , 2 , . . . , n X_i\sim P(\lambda_i),i=1,2,...,n XiP(λi),i=1,2,...,n,则 X 1 + X 2 + . . . X n ∼ P ( ∑ i = 1 n λ i ) \color{red}X_1+X_2+...X_n\sim P(\sum\limits_{i=1}^n \lambda_i) X1+X2+...XnP(i=1nλi)

      • Γ \Gamma Γ 分布:若 X i X_i Xi 之间相互独立,且 X i ∼ Γ ( α i , β ) , i = 1 , 2 , . . . , n X_i\sim \Gamma(\alpha_i,\beta),i=1,2,...,n XiΓ(αi,β),i=1,2,...,n,则 X 1 + X 2 + . . . X n ∼ Γ ( ∑ i = 1 n α i , β ) \color{red}X_1+X_2+...X_n\sim \Gamma(\sum\limits_{i=1}^n \alpha_i,\beta) X1+X2+...XnΓ(i=1nαi,β)

  • 极大值极小值分布( n n n 维随机变量):若 X i X_i Xi 之间相互独立,且 X i X_i Xi 有分布函数 F i ( x i ) , i = 1 , 2 , . . . , n F_i(x_i),i=1,2,...,n Fi(xi),i=1,2,...,n。令 M = max ⁡ { X i , X 2 , . . . , X n } , N = min ⁡ { X i , X 2 , . . . , X n } M=\max\{X_i,X_2,...,X_n\},N=\min\{X_i,X_2,...,X_n\} M=max{Xi,X2,...,Xn},N=min{Xi,X2,...,Xn},则 M , N M,N M,N 的分布函数为
    F M ( x ) = P ( max ⁡ i = 1 n { X i } ≤ x ) = P ( ⋂ i = 1 n X i ≤ x ) = ∏ i = 1 n P ( X i ≤ x ) = ∏ i = 1 n F i ( x ) F N ( x ) = P ( min ⁡ i = 1 n { X i } ≤ x ) = 1 − P ( min ⁡ i = 1 n { X i } > x ) = 1 − P ( ⋂ i = 1 n X i > x ) = 1 − ∏ i = 1 n P ( X i > x ) = 1 − ( ∏ i = 1 n 1 − F i ( x ) ) \begin{aligned}F_M(x)&=P(\max\limits_{i=1}^n \{X_i\}\le x)\\ &=P(\bigcap\limits_{i=1}^n X_i\le x)\\ &=\prod\limits_{i=1}^n P(X_i\le x)\\ &=\color{red}\prod\limits_{i=1}^n F_i(x)\\ F_N(x)&=P(\min\limits_{i=1}^n \{X_i\}\le x)\\ &=1-P(\min\limits_{i=1}^n \{X_i\}> x)\\ &=1-P(\bigcap\limits_{i=1}^n X_i>x)\\ &=1-\prod\limits_{i=1}^n P(X_i> x)\\ &=\color{red}1-\left(\prod\limits_{i=1}^n 1-F_i(x)\right)\\ \end{aligned} FM(x)FN(x)=P(i=1maxn{Xi}x)=P(i=1nXix)=i=1nP(Xix)=i=1nFi(x)=P(i=1minn{Xi}x)=1P(i=1minn{Xi}>x)=1P(i=1nXi>x)=1i=1nP(Xi>x)=1(i=1n1Fi(x))
    特别地,若 X i X_i Xi 之间独立同分布 i.i.d., 则
    { F M ( x ) = F n ( x ) F N ( x ) = 1 − [ 1 − F ( x ) ] n { f M ( x ) = [ F n ( x ) ] ′ = n F n − 1 ( x ) f ( x ) f N ( x ) = [ 1 − [ 1 − F ( x ) ] n ] ′ = n [ 1 − F ( X ) ] n − 1 f ( x ) \begin{cases}F_M(x)=\color{red}F^n(x)\\ F_N(x)=\color{red}1-[1-F(x)]^n\end{cases}\qquad \begin{cases}f_M(x)=[F^n(x)]'=\color{red}nF^{n-1}(x)f(x)\\ f_N(x)=[1-[1-F(x)]^n]'=\color{red}n[1-F(X)]^{n-1}f(x) \end{cases} {FM(x)=Fn(x)FN(x)=1[1F(x)]n{fM(x)=[Fn(x)]=nFn1(x)f(x)fN(x)=[1[1F(x)]n]=n[1F(X)]n1f(x)

    例如:并联系统为极大值分布,串联系统为极小值分布

  • 2
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值