张宇1000题概率论与数理统计 第四、五章 多维随机变量及其分布及多维随机变量函数的分布

目录

第四章  多维随机变量及其分布

C C C

1. 设随机变量 X X X Y Y Y相互独立,证明 X 2 X^2 X2 Y 2 Y^2 Y2也相互独立。

  设 X 2 X^2 X2 Y 2 Y^2 Y2的联合分布函数及边缘分布函数分别为 G ( x , y ) , G 1 ( x ) , G 2 ( y ) G(x,y),G_1(x),G_2(y) G(x,y),G1(x),G2(y) X 2 X^2 X2 Y 2 Y^2 Y2的值域为 [ 0 , + ∞ ) [0,+\infty) [0,+),于是:当 x < 0 x<0 x<0 y < 0 y<0 y<0时, G ( x , y ) = 0 , G 1 ( x ) = 0 , G 2 ( y ) = 0 G(x,y)=0,G_1(x)=0,G_2(y)=0 G(x,y)=0,G1(x)=0,G2(y)=0;当 x ⩾ 0 , y ⩾ 0 x\geqslant0,y\geqslant0 x0,y0时, G ( x , y ) = P { X 2 ⩽ x , Y 2 ⩽ y } = P { − x ⩽ X ⩽ x , − y ⩽ Y ⩽ y } G(x,y)=P\{X^2\leqslant x,Y^2\leqslant y\}=P\{-\sqrt{x}\leqslant X\leqslant\sqrt{x},-\sqrt{y}\leqslant Y\leqslant\sqrt{y}\} G(x,y)=P{ X2x,Y2y}=P{ x Xx ,y Yy };当 x ⩾ 0 x\geqslant0 x0时, G 1 ( x ) = P { X 2 ⩽ x } = P { − x ⩽ X ⩽ x } G_1(x)=P\{X^2\leqslant x\}=P\{-\sqrt{x}\leqslant X\leqslant\sqrt{x}\} G1(x)=P{ X2x}=P{ x Xx };当 y ⩾ 0 y\geqslant0 y0时, G 2 ( x ) = P { Y 2 ⩽ y } = P { − y ⩽ Y ⩽ y } G_2(x)=P\{Y^2\leqslant y\}=P\{-\sqrt{y}\leqslant Y\leqslant\sqrt{y}\} G2(x)=P{ Y2y}=P{ y Yy }
  又因 X X X Y Y Y相互独立,则有 P { − x ⩽ X ⩽ x , − y ⩽ Y ⩽ y } = P { − x ⩽ X ⩽ x } P { − y ⩽ Y ⩽ y } P\{-\sqrt{x}\leqslant X\leqslant\sqrt{x},-\sqrt{y}\leqslant Y\leqslant\sqrt{y}\}=P\{-\sqrt{x}\leqslant X\leqslant\sqrt{x}\}P\{-\sqrt{y}\leqslant Y\leqslant\sqrt{y}\} P{ x Xx ,y Yy }=P{ x Xx }P{ y Yy }。所以有 G ( x , y ) = G 1 ( x ) G 2 ( y ) G(x,y)=G_1(x)G_2(y) G(x,y)=G1(x)G2(y),即 X 2 X^2 X2 Y 2 Y^2 Y2也相互独立。(这道题主要利用了分类讨论求解

第五章  多维随机变量函数的分布

B B B

3.设随机变量 X X X Y Y Y相互独立,且都服从参数为 1 1 1的指数分布,则随机变量 Z = Y X Z=\cfrac{Y}{X} Z=XY的概率密度为______。

  由题意可知 X X X的概率密度为 f ( x ) = { e − x , x > 0 , 0 , 其 他 . f(x)=\begin{cases}e^{-x},&x>0,\\0,&其他.\end{cases} f(x)={ ex,0,x>0,. f Z ( z ) = ∫ − ∞ + ∞ ∣ x ∣ f ( x ) f ( x z ) d x f_Z(z)=\displaystyle\int^{+\infty}_{-\infty}|x|f(x)f(xz)\mathrm{d}x fZ(z)=+xf(x)f(xz)dx,其中 ∣ x ∣ f ( x ) f ( x z ) = { x e − x ⋅ e − z x , x > 0 , z > 0 , 0 , 其 他 = { x e − x ( 1 + z ) , x > 0 , z > 0 , 0 , 其 他 . |x|f(x)f(xz)=\begin{cases}xe^{-x}\cdot e^{-zx},&x>0,z>0,\\0,&其他\end{cases}=\begin{cases}xe^{-x(1+z)},&x>0,z>0,\\0,&其他.\end{cases} xf(x)f(xz)={ xexezx,0,x>0,z>0,={ xex(1+z),0,x>0,z>0,.所以 f Z ( z ) = { ∫ 0 + ∞ x e − x ( 1 + z ) d x , z > 0 , 0 , 其 他 = { 1 ( 1 + z ) 2 , z > 0 , 0 , 其 他 . f_Z(z)=\begin{cases}\displaystyle\int^{+\infty}_0xe^{-x(1+z)}\mathrm{d}x,&z>0,\\0,&其他\end{cases}=\begin{cases}\cfrac{1}{(1+z)^2},&z>0,\\0,&其他.\end{cases} fZ(z)=0+xex(1+z)dx,0,z>0,=(1+z)21,0,z>0,.这道题主要利用了卷积求解

5.设 ( X , Y ) (X,Y) (X,Y)的概率密度为 f ( x , y ) = { 2 , 0 < x < 1 , 0 < y < x , 0 , 其 他 . f(x,y)=\begin{cases}2,&0<x<1,0<y<x,\\0,&其他.\end{cases} f(x,y)={ 2,0,0<x<1,0<y<x,.

(1)求 Z = X − 2 Y Z=X-2Y Z=X2Y的概率密度;

  由分布函数的定义 F Z ( z ) = P { Z ⩽ z } = P { X − 2 Y ⩽ z } F_Z(z)=P\{Z\leqslant z\}=P\{X-2Y\leqslant z\} FZ(z)=P{ Zz}=P{ X2Yz},可知当 z < − 1 z<-1 z<1时, F Z ( z ) = 0 F_Z(z)=0 FZ(z)=0;当 − 1 ⩽ z < 0 -1\leqslant z<0 1z<0时,积分区域如下图所示:
F Z ( z ) = P { X − 2 Y ⩽ z } = ∬ x − 2 y ⩽ z f ( x , y ) d x d y = 2 ∫ − z 1 d x ∫ 1 2 ( x − z ) x d y = 1 2 ( 1 + z ) 2 ; \begin{aligned} F_Z(z)&=P\{X-2Y\leqslant z\}=\displaystyle\iint\limits_{x-2y\leqslant z}f(x,y)\mathrm{d}x\mathrm{d}y\\ &=2\displaystyle\int^1_{-z}\mathrm{d}x\displaystyle\int^x_{\frac{1}{2}(x-z)}\mathrm{d}y=\cfrac{1}{2}(1+z)^2; \end{aligned} FZ(z)=P{ X2Yz}=x2yzf(x,y)dxdy=2z1dx21(xz)xdy=21(1+z)2;

在这里插入图片描述

  当 0 ⩽ z < 1 0\leqslant z<1 0z<1时,积分区域如下图所示:
F Z ( z ) = P { X − 2 Y ⩽ z } = 1 − P { X − 2 Y > z } = 1 − ∬ x − 2 y > z f ( x , y ) d x d y = 1 − 1 2 ( 1 + z ) 2 ; \begin{aligned} F_Z(z)&=P\{X-2Y\leqslant z\}=1-P\{X-2Y>z\}\\ &=1-\displaystyle\iint\limits_{x-2y>z}f(x,y)\mathrm{d}x\mathrm{d}y=1-\cfrac{1}{2}(1+z)^2; \end{aligned} FZ(z)=P{ X2Yz}=1P{ X2Y>z}=1x2y>zf(x,y)dxdy=121(1+z)2;

在这里插入图片描述

  当 z ⩾ 1 z\geqslant1 z1时, F Z ( z ) = 1 F_Z(z)=1 FZ(z)=1
  综上, F Z ( z ) = { 0 , z < − 1 , 1 2 ( 1 + z ) 2 , − 1 ⩽ z < 0 1 − 1 2 ( 1 + z ) 2 , 0 ⩽ z < 1 1 , z ⩾ 1. F_Z(z)=\begin{cases}0,&z<-1,\\\cfrac{1}{2}(1+z)^2,&-1\leqslant z<0\\1-\cfrac{1}{2}(1+z)^2,&0\leqslant z<1\\1,&z\geqslant1.\end{cases} FZ(z)=0,21(1+z)2,121(1+z)2,1,z<1,1z<00z<1z1.所以 f Z ( z ) = F Z ′ ( z ) = { 1 + z , − 1 ⩽ z < 0 , 1 − z , 0 ⩽ z < 1 0 , 其 他 . f_Z(z)=F'_Z(z)=\begin{cases}1+z,&-1\leqslant z<0,\\1-z,&0\leqslant z<1\\0,&其他.\end{cases} fZ(z)=FZ(z)=

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值