第四章 向量空间(线性代数)(未完成)

第四章 向量空间

一、向量的定义与运算

全体平面向量 R 2 = { ( x , y ) ∣ x , y ∈ R } R^2=\{(x,y)|x,y \in R\} R2={(x,y)x,yR},满足加法和数乘。空间向量同理。

  • P86 定义4.1.1 α = ( a ⃗ 1 , a ⃗ 2 , . . . , a ⃗ n ) \alpha = (\vec a_1,\vec a_2,...,\vec a_n) α=(a 1,a 2,...,a n)记作 n n n行向量 α = [ a ⃗ 1 a ⃗ 2 ⋮ a ⃗ n ] \alpha = \begin{bmatrix} \vec a_ 1\\\vec a_2\\ \vdots\\\vec a_n \end{bmatrix} α=a 1a 2a n记作 n n n列向量.

    ( 1 , 2 , 3 , . . . , n ) → n (1,2,3,...,n)\rightarrow n (1,2,3,...,n)n维实向量, ( 1 + 2 i , 2 + 3 i , . . . , n + ( n + 1 ) i ) → n (1+2i,2+3i,...,n+(n+1)i)\rightarrow n (1+2i,2+3i,...,n+(n+1)i)n维复向量。

  • P87 定义4.1.3:全体 n n n维实行(列)向量构成集合 R 1 × n ( R n × 1 ) R^{1\times n}(R^{n\times 1}) R1×n(Rn×1),即 n n n维行(列)向量开空间。 R n ( 表 示 R 1 × n 或 R n × 1 ) R^n(表示R^{1\times n}或R^{n\times 1}) Rn(R1×nRn×1)与其上定义的加法和数乘运算构成** n n n维向量空间**。

    • 注意:空间是一个集合,对加法和数乘封闭
    • V V V是向量空间,则 a 1 , a 2 ∈ V a_1,a_2\in V a1,a2V,一定有 k 1 a 1 + k 1 a 1 ∈ V k_1a_1+k_1a_1\in V k1a1+k1a1V.
  • P88 定义4.1.4:若 k 1 α ⃗ 1 + k 2 α ⃗ 2 + . . . + k p α ⃗ p = β ⃗ k_1\vec\alpha_1+k_2\vec\alpha_2+...+k_p\vec\alpha_p=\vec\beta k1α 1+k2α 2+...+kpα p=β ,则 β ⃗ \vec\beta β 为向量组 α ⃗ i \vec\alpha_i α i的一个向量组合,或 β \beta β可以由 α ⃗ 1 , α ⃗ 2 , . . . , α ⃗ p \vec\alpha_1,\vec\alpha_2,...,\vec\alpha_p α 1,α 2,...,α p线性表出

  • 向量组 A m × n A_{m\times n} Am×n表示m个n维行向量或n个m维列向量。

  • 对线性方程组:相容(有解)    ⟺    \iff

  • 其常数列向量可由各未知量的系数列向量线性表出,即 x 1 α ⃗ 1 + x 2 α ⃗ 2 + . . . + x n α ⃗ n = β ⃗ x_1\vec\alpha_1+x_2\vec\alpha_2+...+x_n\vec\alpha_n=\vec\beta x1α 1+x2α 2+...+xnα n=β

  • 一般方程组 A m × n X n × 1 = b m × 1 A_{m\times n}X_{n\times 1}=b_{m\times 1} Am×nXn×1=bm×1,其增广矩阵为 [ A m × n ∣ b m × 1 ] \begin{bmatrix}A_{m\times n}&|&b_{m\times 1} \end{bmatrix} [Am×nbm×1],化为向量形式(对系数矩阵进行列分块) [ α ⃗ 1 α ⃗ 2 . . . α ⃗ n ∣ b ⃗ m × 1 ] \begin{bmatrix}\vec\alpha_1 &\vec\alpha_2&...&\vec\alpha_n&|&\vec b_{m\times 1} \end{bmatrix} [α 1α 2...α nb m×1]

  • 向量表示形式:判断 m m m维向量 b ⃗ \vec b b 能否由 { a ⃗ 1 , a ⃗ 2 , . . . , a ⃗ n } \{\vec a_1,\vec a_2,...,\vec a_n\} {a 1,a 2,...,a n}线性表出==    ⟺    \iff ==判断 x 1 α ⃗ 1 + x 2 α ⃗ 2 + . . . + x n α ⃗ n = b ⃗ x_1\vec\alpha_1+x_2\vec\alpha_2+...+x_n\vec\alpha_n=\vec b x1α 1+x2α 2+...+xnα n=b 是否有解.

    向量维数(即方程组的个数),向量个数(即未知数个数).

  • 利用初等行变换将增广矩阵化成行最简式

二、线性相关性

  • P89 定义4.2.1:若向量方程 x 1 α ⃗ 1 + x 2 α ⃗ 2 + . . . + x p α ⃗ p = 0 x_1\vec\alpha_1+x_2\vec\alpha_2+...+x_p\vec\alpha_p=0 x1α 1+x2α 2+...+xpα p=0只有零解,则称向量组 { a ⃗ 1 , a ⃗ 2 , . . . , a ⃗ p } \{\vec a_1,\vec a_2,...,\vec a_p\} {a 1,a 2,...,a p}线性无关,若存在不全为零的实数 x i x_i xi使方程成立,则称向量组 { a ⃗ 1 , a ⃗ 2 , . . . , a ⃗ p } \{\vec a_1,\vec a_2,...,\vec a_p\} {a 1,a 2,...,a p}线性相关.

  • 基础性质

    • 1.包含零向量的向量组,必线性相关

    • 2. 一个向量 α ⃗ \vec\alpha α 线性相关    ⟺    α ⃗ = 0 \iff \vec\alpha=0 α =0;两个向量 α ⃗ , β ⃗ \vec\alpha,\vec\beta α ,β 线性相关    ⟺    α ⃗ = k β ⃗ \iff \vec\alpha=k\vec\beta α =kβ (共线)

    • 3.向量组 { a ⃗ 1 , a ⃗ 2 , . . . , a ⃗ p }   ( p ≥ 2 ) \{\vec a_1,\vec a_2,...,\vec a_p\}\,(p\ge2) {a 1,a 2,...,a p}(p2)线性相关    ⟺    \iff 向量组中至少有一个向量可以由其余 p − 1 p-1 p1个向量线性表出(向量组有冗余信息)

      例: 判 断 a ⃗ 1 = { 1 , 2 , 3 } T , a ⃗ 2 = { 4 , 5 , 6 } T , a ⃗ 3 = { 2 , 1 , 0 } T 的 线 性 相 关 性 \color{blue}判断\vec a_1=\{1,2,3\}^T,\vec a_2=\{4,5,6\}^T,\vec a_3=\{2,1,0\}^T的线性相关性 a 1={1,2,3}T,a 2={4,5,6}T,a 3={2,1,0}T线

      解:
      考 虑 x 1 α ⃗ 1 + x 2 α ⃗ 2 + x 3 α ⃗ 3 = 0 是 否 有 非 零 解 , 则 其 增 广 矩 阵 变 换 为 [ 1 4 2 0 2 5 1 0 3 6 0 0 ] → [ 1 0 − 2 0 0 1 1 0 0 0 0 0 ] 故 x 3 是 自 由 变 量 , 不 妨 设 x 3 = 1 , 于 是 x 1 = 2 , x 2 = − 1 , 则 2 α ⃗ 1 − α ⃗ 2 + α ⃗ 3 = 0 线 性 相 关 . 考虑x_1\vec\alpha_1+x_2\vec\alpha_2+x_3\vec\alpha_3=0是否有非零解,则其增广矩阵变换为 \\ \begin{bmatrix}1&4&2&0 \\ 2&5&1&0 \\ 3&6&0&0 \end{bmatrix}\rightarrow \begin{bmatrix} 1&0&-2&0 \\ 0&1&1&0 \\ 0&0&0&0 \end{bmatrix} \\ 故x_3是自由变量,不妨设x_3=1,于是x_1=2,x_2=-1,则2\vec\alpha_1-\vec\alpha_2+\vec\alpha_3=0线性相关. x1α 1+x2α 2+x3α 3=0广123456210000100010210000x3x3=1,x1=2,x2=12α 1α 2+α 3=0线.

      总结:判读向量组的相关性(能否线性表出)    ⟺    { 齐 次 方 程 组 x 1 α ⃗ 1 + x 2 α ⃗ 2 + . . . + x p α ⃗ p = 0 是 否 有 非 零 解 非 齐 次 方 程 组 x 1 α ⃗ 1 + x 2 α ⃗ 2 + . . . + x p α ⃗ p = α ⃗ p + 1 是 否 有 解 \color{red}\iff \begin{cases} 齐次方程组x_1\vec\alpha_1+x_2\vec\alpha_2+...+x_p\vec\alpha_p=0是否有非零解 \\非齐次方程组x_1\vec\alpha_1+x_2\vec\alpha_2+...+x_p\vec\alpha_p=\vec\alpha_{p+1}是否有解 \end{cases} {x1α 1+x2α 2+...+xpα p=0x1α 1+x2α 2+...+xpα p=α p+1

      ​ (方程个数为 n n n,未知数个数为 p p p,系数矩阵 A = [ α ⃗ 1 α ⃗ 2 . . . α ⃗ p ] n × p A=\begin{bmatrix}\vec\alpha_1&\vec\alpha_2&...&\vec\alpha_p\end{bmatrix}_{n\times p} A=[α 1α 2...α p]n×p,主元列数 r ( A ) ≤ m i n { n , p } r(A)\le min\{n,p\} r(A)min{n,p}

      ​ 写出同解方程组(化为行最简形矩阵),则** p p p个未知数中,基本变量为 r ( A ) r(A) r(A)个,自由变量为 p − r ( A ) p-r(A) pr(A)个**。取自由变量为固定值,即可。

      例: A 是 n 维 方 阵 , a 是 n 维 向 量 . 若 A m − 1 a ≠ 0 , A m a = 0. 证 明 : A a , A 2 a , . . . , A m − 1 a 线 性 无 关 \color{blue}A是n维方阵,a是n维向量.若A^{m-1}a\ne0,A^ma=0.证明:Aa,A^2a,...,A^{m-1}a线性无关 An,an.Am1a=0,Ama=0.Aa,A2a,...,Am1a线
      设 k 1 A a + k 2 A 2 a + . . . + k m − 1 A m − 1 a = 0   ( ∗ ) 对 ( ∗ ) 左 乘 A 得 : k 1 A 2 a + k 2 A 3 a + . . . + k m − 2 A m − 1 a + 0 = 0 不 断 对 ( ∗ ) 左 乘 A m − 2 得 : k 1 A m − 1 a = 0 ∵ A m − 1 a ≠ 0   ∴ k 1 = 0. 代 入 可 得 k 1 = k 2 = . . . = k m − 1 = 0 , 故 线 性 无 关 设k_1Aa+k_2A^2a+...+k_{m-1}A^{m-1}a=0\,(*) \\ 对(*)左乘A得: k_1A^2a+k_2A^3a+...+k_{m-2}A^{m-1}a+0=0 \\ 不断对(*)左乘A^{m-2}得: k_1A^{m-1}a=0 \\ \because A^{m-1}a\ne0\,\therefore k_1=0. \\ 代入可得k_1=k_2=...=k_{m-1}=0,故线性无关 k1Aa+k2A2a+...+km1Am1a=0()()A:k1A2a+k2A3a+...+km2Am1a+0=0()Am2:k1Am1a=0Am1a=0k1=0.k1=k2=...=km1=0,线
      ​ ==总结==证明线性无关:先设 k 1 α ⃗ 1 + k 2 α ⃗ 2 + . . . + k p α ⃗ p = 0 k_1\vec\alpha_1+k_2\vec\alpha_2+...+k_p\vec\alpha_p=0 k1α 1+k2α 2+...+kpα p=0下证 k 1 = k 2 = . . . = k p = 0 k_1=k_2=...=k_p=0 k1=k2=...=kp=0.

    • 4.若向量组 { a ⃗ 1 , a ⃗ 2 , . . . , a ⃗ p } ( I ) \{\vec a_1,\vec a_2,...,\vec a_p\}(I) {a 1,a 2,...,a p}(I)线性无关, { a ⃗ 1 , a ⃗ 2 , . . . , a ⃗ p , β ⃗ } \{\vec a_1,\vec a_2,...,\vec a_p,\vec \beta\} {a 1,a 2,...,a p,β }线性相关,则 β ⃗ \vec \beta β 可由向量组 ( I ) (I) (I)唯一线性表出

    • 5.若向量组所含向量个数比向量的分量数目多,则向量组必相关 p > n p>n p>n必有多余向量 o r or or 3个二维向量一定线性相关)

    • 6.若向量组 ( n × p ) (n\times p) (n×p)线性无关,在每个向量的相同位置添1个分量后所得向量组 ( ( n + 1 ) × p ) ((n+1) \times p) ((n+1)×p)仍然线性无关(推论: 1 → m 1\rightarrow m 1m仍成立)

  • 与行列式的性质

    • n n n n n n维列向量 a 1 , a 2 , . . . , a n a_1,a_2,...,a_n a1,a2,...,an线性相关    ⟺    n \iff n n行列式 d e t ( a ⃗ 1 , a ⃗ 2 , . . . , a ⃗ n ) = 0 det(\vec a_1,\vec a_2,...,\vec a_n)=0 det(a 1,a 2,...,a n)=0.

      证:克莱姆法则

  • 部分与整体性质

    • 整体线性无关,则部分线性无关;若部分线性相关,则整体线性相关,(向量个数==由多到少保留无关性由少到多保留相关性==)

      证:k=0为填充物

三、极大无关线性组和秩

  • P93 定义4.3.1:向量组 A n × p A_{n\times p} An×p中的每一个向量都可以由向量组 B n × t B_{n\times t} Bn×t线性表出,则称 A A A可以由 B B B线性表出,即 [ β ⃗ 1 β ⃗ 2 . . . β ⃗ t ] ⋅ [ k 11 k 12 . . . k 1 p k 21 k 22 . . . k 2 p ⋮ ⋮ ⋮ k t 1 k t 2 . . . k t p ] = [ α ⃗ 1 α ⃗ 2 . . . α ⃗ p ] \begin{bmatrix}\vec\beta_1 &\vec\beta_2&...&\vec\beta_t\end{bmatrix}\cdot \begin{bmatrix} k_{11}&k_{12}&...&k_{1p} \\ k_{21}&k_{22}&...&k_{2p} \\ \vdots &\vdots &&\vdots \\k_{t1}&k_{t2}&...&k_{tp} \end{bmatrix}= \begin{bmatrix}\vec\alpha_1 &\vec\alpha_2&...&\vec\alpha_p\end{bmatrix} [β 1β 2...β t]k11k21kt1k12k22kt2.........k1pk2pktp=[α 1α 2...α p](矩阵方程有解)。

  • P93 定理4.3.1:向量组 A n × p A_{n\times p} An×p可由向量组 B n × t B_{n\times t} Bn×t 线性表出, p > t    ⟺    p>t\iff p>t 方程组 A n × p A_{n\times p} An×p 线性相关(在线性方程组方面,可理解为。。。)

    证明提示:对于齐次线性方程 A m × n ⋅ x ⃗ = 0 A_{m\times n} \cdot \vec x=0 Am×nx =0,当== n > r ( A ) \color{Red}n>r(A) n>r(A)== 时,必有非零解

  • P94 定理4.3.2线性无关向量组 A n × p A_{n\times p} An×p可由向量组 B n × t B_{n\times t} Bn×t线性表出,$\iff 则 则 p\le t$.

    推论:两等价线性无关向量组的向量个数相同

    总结 p p p个相关向量可由少于 p p p个向量线性表出, p p p个无关向量至少要 p p p个向量线性表出

  • P94 定义4.3.2:向量组 ( I ) (I) (I)中的任意向量可由其线性无关部分 ( I I ) (II) (II)线性表出,则称 ( I I ) (II) (II) ( I ) (I) (I)的一个极大线性无关组。

    基本性质

    • 不唯一
    • 向量个数相同,称为向量组的秩(rank),记作 r ( a ⃗ 1 , a ⃗ 2 , . . . , a ⃗ p ) r(\vec a_1,\vec a_2,...,\vec a_p) r(a 1,a 2,...,a p)
    • 均与向量组本身等价
    • 一个线性无关向量组的极大线性无关组为其本身(若秩<向量个数,则向量组线性相关;若秩=向量个数,则向量组线性无关)
  • 求向量组的秩和一个极大无关组

    • 由于行化简后的方程组和原式是同解方程组,变化可得
    • 使由主元列构成

四、子空间

任意向量组构成的生成集

  • 三要素:

  • 特殊子空间(平凡子空间)

  • 最小生成集是极大无关组(线性无关生成集是子空间的最小生成集,是描述子空间结构的更有效的方式.)

例:证集合H1=集合H2:$任意\beta\in H1\Rightarrow \beta\in H2 $

  • col

    最小生成集的本质就是极大无关组

  • nul

    NulA ∈ R n \in R^n Rn

    (列空间是列向量生成的,零空间是解向量生成的)

五、基和维数(串概念)

基一定是方阵吗

引入:定义域到值域的

子空间H的生成集不唯一(可由不同向量张成):有冗余(无意义),所以关注子空间最小生成集(相当于关注向量组的极大无关组),即,基中所含向量个数唯一,称为维数(dimH)

H属于 R n R^n Rn,dim(H) ≤ \le n

基的条件:线性无关

A m × n = [ a 1 , a 2 , . . . , a n ] A_{m\times n}=[a_1,a_2,...,a_n] Am×n=[a1,a2,...,an],n个m维的列向量构成向量组

  • 求A的列空间ColA的一组基    ⟺    \iff 求A的列向量组的极大无关组

  • 求A的零空间NulA的一组基    ⟺    \iff 求A的解向量的极大无关组

  • 求向量a在

求A的列空间ColA的一组基    ⟺    \iff 求A的列向量组的极大无关组
求A的零空间NulA的一组基    ⟺    \iff 求A的解向量的极大无关组
   ⟺    \iff
   ⟺    \iff

六、矩阵的秩

  • 秩的性质:对于矩阵 A m × n A_{m\times n} Am×n

    1. 矩阵左/右乘可逆矩阵秩不变(矩阵初等变换不改变矩阵的秩) r ( A ) = r ( P A ) = r ( A Q ) = r ( P A Q ) r(A)=r(PA)=r(AQ)=r(PAQ) r(A)=r(PA)=r(AQ)=r(PAQ)

    2. 矩阵的 A A A行秩=列秩= r ( A ) r(A) r(A)

    3. 矩阵等价充要条件为秩相同 A ≃ B    ⟺    r ( A ) = r ( B ) A\simeq B\iff r(A)=r(B) ABr(A)=r(B)

      向量组(两组向量个数不一定等)等价充要条件为可互相线性表出    ⟺    r ( A ) = r ( B ) = r ( A , B ) \iff r(A)=r(B)=r(A,B) r(A)=r(B)=r(A,B)

    4. 秩定理 r ( A ) + dim ⁡ N u l A = n r(A)+\dim NulA=n r(A)+dimNulA=n(列数)

    5. r ( A ) = r ( A T ) r(A)=r(A^T) r(A)=r(AT)

    6. r ( A ± B ) ≤ r ( A ) + r ( B ) r(A\pm B)\le r(A)+r(B) r(A±B)r(A)+r(B)

    7. r ( A , B ) s × ( n + t ) ≤ r ( A s × n ) + r ( B s × t ) r(A,B)_{s\times (n+t)}\le r(A_{s\times n})+r(B_{s\times t}) r(A,B)s×(n+t)r(As×n)+r(Bs×t)

    8. r ( A ) + r ( B ) − n ≤ r ( A B ) s × n ≤ min ⁡ { r ( A s × n ) , r ( B n × t ) } r(A)+r(B)-n\le r(AB)_{s\times n}\le \min\{r(A_{s\times n}),r(B_{n\times t})\} r(A)+r(B)nr(AB)s×nmin{r(As×n),r(Bn×t)}

      A B = 0 AB=0 AB=0时,有 r ( A ) + r ( B ) ≤ n r(A)+r(B)\le n r(A)+r(B)n.

    9. r ( A ∗ ) = { n r ( A ) = n 1 r ( A ) = n − 1 0 r ( A ) = < n − 1 r(A^*)=\begin{cases}n\qquad r(A)=n\\1\qquad r(A)=n-1\\0\qquad r(A)=<n-1\end{cases} r(A)=nr(A)=n1r(A)=n10r(A)=<n1

    10. 方阵 A n A_n An

      • r ( A ) = n r(A)=n r(A)=n(满秩):表示 n n n个行/列向量线性无关, ∣ A ∣ ≠ 0 |A|\ne0 A=0为可逆矩阵, A X = 0 AX=0 AX=0只有零解
      • r ( A ) < n r(A)<n r(A)<n:表示 n n n个行/列向量线性相关, ∣ A ∣ = 0 |A|=0 A=0 A X = 0 AX=0 AX=0有非零解(无穷组解)

七、线性方程组的有解条件及解的结构

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值