第一章 命题逻辑(数理逻辑)

第一章 命题逻辑

1.1 命题与逻辑联结词 Propositional Logic

  • 命题定义

    1. 陈述句 Declaration Sentence
    2. True or false, Not Both

    注意:疑问句 × \times ×,祈使句 × \times ×,无法判断对错 × \times × 1 + 1 = 2 × 1+1=2\times 1+1=2×无法判断十进制还是二进制???),主观感受 × \times ×,若有上下文可判断对错。

  • 命题变量 Propositional variables p , q , r , s p,q,r,s p,q,r,s

  • 关系命题 Compound Propositional

    1. 非,否 lnotation ¬ p \lnot p ¬p
    2. 合取 Conjunction p ∧ q p\land q pq a n d and and,并且)
    3. 析取 Disjunction,容斥合 Inclusive Or p ∨ q p\lor q pq o r or or,或)
    4. 排斥合 Exclusive Or p ⊕ q p\oplus q pq x o r xor xor,异或)
  • 条件联结词 Implication/ Conditional Statement

    1. 单条件 p ( 条 件 ) → q ( 结 论 ) p(条件)\rightarrow q(结论) p()q() . (韦恩图中 p − q ‾ \color{red}\overline{p-q} pq
    2. 双条件 Biconditional p ⟷ q p \longleftrightarrow q pq (韦恩图中 ( p ⋂ q ) ⋃ ( p ⋃ q ) ‾ \color{red}(p\bigcap q)\bigcup \overline{(p\bigcup q)} (pq)(pq))(=if and only if 当且仅当 = necessary and sufficient 充分必要条件 = 反之亦然)    ⟺    ¬ ( p ⊕ q ) \iff \neg(p\oplus q) ¬(pq)
    pq p → q p\rightarrow q pq p ⟷ q p \longleftrightarrow q pq
    TTTT
    TF F \color{red}F F F \color{red}F F
    FTT F \color{red}F F
    FFTT

    注意 p , q p,q p,q之间不需要有关, p → q p\rightarrow q pq 仅确定形式,不确定内容

    记忆p 代表人诚实,q 代表话对错, p → q p\rightarrow q pq 代表推理看法

    Different Ways of Expressing p → q p\rightarrow q pqpq
    if p, then q11
    if p, q11
    Star \color{white}\colorbox{red}{Star} Starq unless ¬ \lnot ¬ pq 为真除非 ¬ \lnot ¬p 为假)(unless 记为 if not11
    q if p11
    q whenever p01,11
    q follows from p11,00
    p implies q11,00
    Star \color{white}\colorbox{red}{Star} Starp only if qp 为真仅当 q 为真)11
    q when p11
    p is sufficient for q/
    q is necessary for p/

    必要条件 Necessary Condition,充分条件 Sufficient Condition

    • p → q p\rightarrow q pq 命题 Converse p → q p\rightarrow q pq
    • p → q p\rightarrow q pq 逆反命题 Contrapositive ¬ q → ¬ p \lnot q\rightarrow \lnot p ¬q¬p
    • p → q p\rightarrow q pq 命题 Inverse ¬ p → ¬ q \lnot p\rightarrow \lnot q ¬p¬q
    • 举例p 表示不下雨,q 表示去逛街
      1. p → q p\rightarrow q pq:不下雨,就去逛街
      2. 命题 p → q p\rightarrow q pq:去逛街,就(一定是因为)不下雨
      3. 逆反命题 ¬ q → ¬ p \lnot q\rightarrow \lnot p ¬q¬p:不逛街,就是(因为)下雨(了)
      4. 命题 ¬ p → ¬ q \lnot p\rightarrow \lnot q ¬p¬q:下雨,就不去逛街
  • 复合命题的真值表 Truth table for Compound Propositions:

    1. 等价命题 Equivalent Propositons有相同的真值表
      • 逆反命题与命题等价
      • 命题与命题等价
    pq ¬ \lnot ¬p ¬ \lnot ¬q原命题 p → q p\rightarrow q pq逆命题 q → p q\rightarrow p qp逆反命题 ¬ q → ¬ p \lnot q\rightarrow \lnot p ¬q¬p反命题 ¬ p → ¬ q \lnot p\rightarrow \lnot q ¬p¬q
    TTFFTTTT
    TFFT F \color{red}F FT F \color{red}F FT
    FTTFT F \color{red}F FT F \color{red}F F
    FFTTTTTT
    1. 行数:n 个变量的真值表有 2 n 2^n 2n
    2. 既然一个命题 n 个变量有 2 n 2^n 2n种情况,那 n 个变量的 2 n 2^n 2n种结果可构成 2 2 n 2^{2^n} 22n种不同真值表。
  • 优先级 Precedence:若没有括号, ¬ \lnot ¬ 最高,其余优先级相同,从左向右读取

  • 位运算 Bit Operations:按位(bitwise)计算

1.2 命题公式及其赋值 Application of Propositional Logic

  • 自然语言符号化 Translating

    1. 找到原子(不可再分)命题 atomic propositional
    2. 确定合适的关系,注意格式

    例:“You cannot ride the roller coaster(过山车) if you are under 4 feet tall unless you are older than 16 years old.”

    解:
    p : “ You can ride the roller coaster ” q : “ You are under 4 feet tall ” r : “ You are older than 16 years old ” . ( q ∧ ¬ r ) → ¬ p . p:“\text{You can ride the roller coaster}” \\q:“\text{You are under 4 feet tall}” \\r:“\text{You are older than 16 years old}”. \\ \color{red}(q\land \lnot r)\rightarrow \lnot p. pYou can ride the roller coasterqYou are under 4 feet tallrYou are older than 16 years old.(q¬r)¬p.

  • 系统规范说明 System Specificatons

    • 一致性 Consistent:不能前后矛盾

    例:$(1)p\lor q;(2)\lnot p;(3)p\rightarrow q;(4)\lnot q $

    解: ( 4 ) × (4)\color{red}\times (4)×

    解释:若一致,要找到一种变量的可能情况,使命题均满足

  • Logic Puzzles

  • Logic Circuits

1.3 命题公式的等价 Propositional Equivalences

  • 定义1
    1. 永真式(重言式) Tautology:例 p ∨ ¬ p p\lor \lnot p p¬p
    2. 永假式(矛盾式) Contradiction:例 p ∧ ¬ p p\land \lnot p p¬p
    3. 可满足式(可能式) Contingency:例 p p p
p ¬ \lnot ¬p p ∨ ¬ p p\lor \lnot p p¬p p ∧ ¬ p p\land \lnot p p¬p
TFTF
FTTF
  • 定理1.3 p ↔ q p\leftrightarrow q pq为永真式(Tautology)    ⟺    \iff 两个复合命题逻辑等价(Equivalent),真值表相同。记为 p    ⟺    q p\iff q pq p ≡ q p\equiv q pq

    证明:充分性,必要性(运用了永真式,等价,双条件的定义)

    注意    ⟺    \iff ⟷ \longleftrightarrow 的区别

    ⟷ \longleftrightarrow    ⟺    \iff
    **双条件词(**逻辑连结词)**逻辑等价(**等价关系)
    p ⟷ q p\longleftrightarrow q pq 是命题公式 p    ⟺    q p\iff q pq 不是命题公式
  • 常见等价命题

名称等式等式
同一律 Identity laws E 13 :    p ∨ T    ⟺    p E_{13}:\;p\lor T\iff p E13:pTp E 14 :    p ∧ F    ⟺    p E_{14}:\;p\land F\iff p E14:pFp
零律 Dominaton laws E 15 :    p ∨ F    ⟺    F E_{15}:\;p\lor F\iff F E15:pFF E 16 :    p ∧ T    ⟺    T E_{16}:\;p\land T\iff T E16:pTT
幂等律 Idempotent laws E 3 :    p ∨ p    ⟺    p E_3:\;p\lor p\iff p E3:ppp E 4 :    p ∧ p    ⟺    p E_4:\;p\land p\iff p E4:ppp
双重否定律 Double lnotation laws E 19 :    ¬ ( ¬ p )    ⟺    p E_{19}:\;\lnot(\lnot p)\iff p E19:¬(¬p)p p    ⟺    ¬ ( ¬ p ) p\iff \lnot(\lnot p) p¬(¬p)
交换律 Commutative laws E 5 :    p ∨ q    ⟺    q ∨ p E_5:\;p\lor q\iff q\lor p E5:pqqp E 6 :    p ∧ q    ⟺    q ∧ p E_6:\;p\land q\iff q\land p E6:pqqp
结合律 Associative laws E 7 :    ( p ∨ q ) ∨ r    ⟺    p ∨ ( q ∨ r ) E_7:\;(p\lor q)\lor r\iff p\lor (q\lor r) E7:(pq)rp(qr) E 8 :    ( p ∧ q ) ∧ r    ⟺    p ∧ ( q ∧ r ) E_8:\;(p\land q)\land r\iff p\land (q\land r) E8:(pq)rp(qr)
Star \color{white}\colorbox{red}{Star} Star:分配律 Distributive laws E 11 :    p ∨ ( q ∧ r )    ⟺    ( p ∨ q ) ∧ ( p ∨ r ) E_{11}:\;p\lor (q\land r)\iff (p\lor q)\land (p\lor r) E11:p(qr)(pq)(pr) E 12 :    p ∧ ( q ∨ r )    ⟺    ( p ∧ q ) ∨ ( p ∧ r ) E_{12}:\;p\land (q\lor r)\iff (p\land q)\lor (p\land r) E12:p(qr)(pq)(pr)
德摩根定律 De Morgan’s laws E 23 :    ¬ ( p ∨ q )    ⟺    ¬ p ∧ ¬ q E_{23}:\;\lnot(p\lor q)\iff \lnot p\land \lnot q E23:¬(pq)¬p¬q E 24 :    ¬ ( p ∧ q )    ⟺    ¬ p ∨ ¬ q E_{24}:\;\lnot(p\land q)\iff \lnot p\lor \lnot q E24:¬(pq)¬p¬q
吸收律 Absorption laws E 9 :    ( p ∨ ( p ∧ q )    ⟺    p E_9:\;(p\lor (p\land q)\iff p E9:(p(pq)p E 10 :    ( p ∧ ( p ∨ q )    ⟺    p E_{10}:\;(p\land (p\lor q)\iff p E10:(p(pq)p
矛盾律 lnotation laws E 17 :    p ∨ ¬ p    ⟺    T E_{17}:\;p\lor \lnot p\iff T E17:p¬pT E 18 :    p ∧ ¬ p    ⟺    F E_{18}:\;p\land \lnot p\iff F E18:p¬pF
输出律 E 20 : ( G ∧ H ) → S    ⟺    G → ( H → S ) E_{20}:(G\land H)\rightarrow S\iff G\rightarrow(H\rightarrow S) E20:(GH)SG(HS)/
排中律 E 21 : ( G ∨ H )    ⟺    ( ¬ G ∧ H ) ∨ ( G ∧ ¬ H ) E_{21}:(G\lor H)\iff (\neg G\land H)\lor(G\land \neg H) E21:(GH)(¬GH)(G¬H)/
逆反律 E 22 : P → Q    ⟺    ¬ Q → ¬ P E_{22}:P\rightarrow Q\iff\neg Q\rightarrow \neg P E22:PQ¬Q¬P/
  • 必背等式
Star    E 2    {\color{white}\colorbox{red}{Star}}\;E_2\; StarE2 p → q    ⟺    ¬ p ∨ q p\rightarrow q\iff\lnot p\lor q pq¬pq E 1 :    p ↔ q    ⟺    ( p → q ) ∧ ( q → p ) E_1:\;p \leftrightarrow q\iff (p\rightarrow q)\land(q\rightarrow p) E1:pq(pq)(qp)
( p → q ) ∧ ( p → r )    ⟺    p → ( q ∧ r ) (p\rightarrow q)\land(p\rightarrow r)\iff p\rightarrow(q\land r) (pq)(pr)p(qr) ( p → q ) ∨ ( p → r )    ⟺    p → ( q ∨ r ) (p\rightarrow q)\lor(p\rightarrow r)\iff p\rightarrow(q\lor r) (pq)(pr)p(qr)
( p → r ) ∧ ( q → r )    ⟺    ( p ∨ q ) → r (p\rightarrow r)\land(q\rightarrow r)\iff (p\lor q)\rightarrow r (pr)(qr)(pq)r ( p → r ) ∨ ( q → r )    ⟺    ( p ∧ q ) → r (p\rightarrow r)\lor(q\rightarrow r)\iff (p\land q)\rightarrow r (pr)(qr)(pq)r

记忆:一指多不变(号),多指一变(号)

1.4 联结词的完备集

  • 其他联结词
    1. 与非
    2. 或非
    3. 条件否定
  • 联结词的内在联系
  • 功能完备集
    • 最小功能完备集

1.5 命题公式的范式表示

1.6 命题公式的蕴涵

  • 定义1.18:若 A A A 为真时 B B B 也为真( A A A 为假时不考虑),则称** A A A蕴含 B B B**,并记为 A ⇒ B A\Rightarrow B AB.(韦恩图中 A ⊃ B \color{red}A\supset B AB

  • 定理1.11 ( A ⟹ B )    ⟺    ( A ⟶ B (A\Longrightarrow B)\iff (A\longrightarrow B (AB)(AB 为永真式)

    注意 ⟹ \Longrightarrow ⟶ \longrightarrow 的区别

    ⟶ \longrightarrow ⟹ \Longrightarrow
    命题联结词公式间关系符
    A ⟶ B A\longrightarrow B AB 是命题公式 A ⟹ B A\Longrightarrow B AB 不是命题公式,仅表示蕴含关系
  • 性质

    1. 自反性 A ⟹ A A\Longrightarrow A AA

    2. 反对称性:若 A ⟹ B A\Longrightarrow B AB B ⟹ A B\Longrightarrow A BA,则有 A ⟺ B A\Longleftrightarrow B AB

    3. A ⟹ B A\Longrightarrow B AB A A A 为永真式,则 B B B 必为永真式

    4. 传递性:若 A ⟹ B A\Longrightarrow B AB B ⟹ C B\Longrightarrow C BC,则有 A ⟹ C A\Longrightarrow C AC

    5. Star \color{white}\colorbox{red}{Star} Star:若 A ⟹ B A\Longrightarrow B AB A ⟹ C A\Longrightarrow C AC,则有 A ⟹ B ∧ C A\Longrightarrow B\land C ABC,反之亦然

    6. Star \color{white}\colorbox{red}{Star} Star:若 A ⟹ C A\Longrightarrow C AC B ⟹ C B\Longrightarrow C BC,则有 A ∨ B ⟹ C A\lor B\Longrightarrow C ABC,反之亦然

      证明:
      A ⟹ C 且 B ⟹ C ( A → C ) ∧ ( B → C ) 是 永 真 式 ( A ∨ B ) → C 是 永 真 式 A ∨ B ⟹ C \begin{aligned} &A\Longrightarrow C且B\Longrightarrow C \\ &(A\rightarrow C)\land(B\rightarrow C)是永真式 \\&(A\lor B)\rightarrow C是永真式 \\&A\lor B\Longrightarrow C \end{aligned} ACBC(AC)(BC)(AB)CABC

    7. C P CP CP规则基础 A ∧ B ⟹ C A\land B\Longrightarrow C ABC 当且仅当 A ⟹ B → C A\Longrightarrow B\rightarrow C ABC

    8. 反证法基础 ( A ⟹ B )    ⟺    ( A ∧ ¬ B ) (A\Longrightarrow B)\iff (A\land\neg B) (AB)(A¬B) 是矛盾式

    9. 逆向思维基础 ( A ⟹ B )    ⟺    ( ¬ B ⟹ ¬ A ) (A\Longrightarrow B)\iff (\neg B\Longrightarrow \neg A) (AB)(¬B¬A)

  • 蕴含定律(基本关系式)

    1. Star \color{white}\colorbox{red}{Star} Star 扩充法则(析取引入律) I 1 I_1 I1 P ⟹ P ∨ Q P\Longrightarrow P\lor Q PPQ Q ⟹ P ∨ Q Q\Longrightarrow P\lor Q QPQ ¬ P ⟹ P → Q \neg P\Longrightarrow P\rightarrow Q ¬PPQ Q ⟹ P → Q Q\Longrightarrow P\rightarrow Q QPQ
    2. Star \color{white}\colorbox{red}{Star} Star 化简法则(合取消去律) I 2 I_2 I2 P ∧ Q ⟹ P P\land Q\Longrightarrow P PQP P ∧ Q ⟹ Q P\land Q\Longrightarrow Q PQQ ¬ ( P → Q ) ⟹ P \neg(P\rightarrow Q)\Longrightarrow P ¬(PQ)P P → Q ⟹ Q P\rightarrow Q\Longrightarrow Q PQQ
    3. Star \color{white}\colorbox{red}{Star} Star 假言推论(分离规则) I 3 I_3 I3 P ∧ ( P → Q ) ⟹ Q P\land(P\rightarrow Q)\Longrightarrow Q P(PQ)Q
    4. 否定式假言推论(拒取式) I 4 I_4 I4 ¬ Q ∧ ( P → Q ) ⟹ ¬ P \neg Q\land(P\rightarrow Q)\Longrightarrow \neg P ¬Q(PQ)¬P
    5. 析取三段论(选言三段论) I 5 I_5 I5 ¬ P ∧ ( P ∨ Q ) ⟹ Q \neg P\land(P\lor Q)\Longrightarrow Q ¬P(PQ)Q
    6. Star \color{white}\colorbox{red}{Star} Star 假言三段论(前提条件) I 6 I_6 I6 ( P → Q ) ∧ ( Q → R ) ⟹ ( P → R ) (P\rightarrow Q)\land(Q\rightarrow R)\Longrightarrow (P\rightarrow R) (PQ)(QR)(PR)
    7. 二难推论 I 7 I_7 I7 ( P ∨ Q ) ∧ ( P → R ) ∧ ( Q → R ) ⟹ R (P\lor Q)\land(P\rightarrow R)\land(Q\rightarrow R) \Longrightarrow R (PQ)(PR)(QR)R
    8. I 8 I_8 I8 ( P → Q ) ∧ ( R → S ) ⟹ ( P ∧ R ) → ( Q ∧ S ) (P\rightarrow Q)\land(R\rightarrow S)\Longrightarrow (P\land R)\rightarrow (Q\land S) (PQ)(RS)(PR)(QS)
    9. I 9 I_9 I9 ( P ↔ Q ) ∧ ( Q ↔ R ) ⟹ ( P ↔ R ) (P\leftrightarrow Q)\land(Q\leftrightarrow R)\Longrightarrow (P\leftrightarrow R) (PQ)(QR)(PR)
    10. 归结原理 I 10 I_{10} I10 ( P ∨ Q ) ∧ ( ¬ P ∨ R ) ⟹ ( Q ∨ R ) (P\lor Q)\land(\neg P\lor R)\Longrightarrow (Q\lor R) (PQ)(¬PR)(QR)

1.7 命题逻辑的推理方法

  • 演绎/形式证明:依据推理规则一些前提中推导出一个结论

    • 定义1.19:若 G 1 ∧ G 2 ∧ . . . ∧ G n ⟹ H G_1\land G_2\land...\land G_n\Longrightarrow H G1G2...GnH,称 H H H前提 G 1 , G 2 , . . . , G n G_1,G_2,...,G_n G1,G2,...,Gn逻辑结果/有效结论
    • 定理 H H H G = { G 1 , G 2 , . . . , G n } G=\{G_1,G_2,...,G_n\} G={G1,G2,...,Gn} 的逻辑结果    ⟺    G 1 ∧ G 2 ∧ . . . ∧ G n ⟶ H \iff G_1\land G_2\land...\land G_n\longrightarrow H G1G2...GnH 为永真式。
    • 注意:结论的真实性与推理的有效性无关。若前提为真,有效结论才为真。
  • 推理规则

    1. P P P 规则(前提引用规则):引入前提集合中任一前提
    2. T T T 规则(逻辑结果引用规则):利用基本等价式和蕴涵式将中间公式变出新公式。若依据等价式,标明为 T E TE TE;若依据蕴涵式,标明为 T I TI TI
    3. C P CP CP 规则(附加前提规则):若目标结果形如 P ⟶ Q P\longrightarrow Q PQ,则将 P P P 作为附加前提。
  • 推理方法

    • 真值表法:构造 G 1 ∧ G 2 ∧ . . . ∧ G n ⟶ H G_1\land G_2\land...\land G_n\longrightarrow H G1G2...GnH 的真值表,判断是否为永真式。但命题变元数量多时,实用难度大。

    • 演绎法:从前提出发,依据推理规则,导出结论。

      1. 直接证明法:利用 P P P 规则和 T T T 规则

        例题 \color{White}\colorbox{Fuchsia}{例题} :求证 I 7 : I_7: I7: S ∨ R S\lor R SR 是前提 { P ∨ Q , P → R , Q → R } \{P\lor Q,P\rightarrow R,Q\rightarrow R\} {PQ,PR,QR} 的有效结论。

        证明:
        ( 1 ) P ∨ Q P ( 2 ) ¬ P → Q T , ( 1 ) , E 2 ( 3 ) Q → S P ( 4 ) ¬ P → S T , ( 2 ) , ( 3 ) , I 6 ( 5 ) ¬ S → P T , ( 4 ) , E 22 ( 6 ) P → R P ( 7 ) ¬ S → R T , ( 5 ) , ( 6 ) , I 6 ( 8 ) S ∨ R T , ( 7 ) , E 2 ∴ { P ∨ Q , P → R , Q → R } ⟹ S ∨ R \begin{aligned} &(1)&&P\lor Q &&P\\ &(2)&&\neg P\rightarrow Q && T,(1),E_2\\ &(3)&&Q\rightarrow S&&P\\ &(4)&&\neg P\rightarrow S&&T,(2),(3),I_6\\ &(5)&&\neg S\rightarrow P&&T,(4),E_{22}\\ &(6)&&P\rightarrow R&& P\\ &(7)&&\neg S\rightarrow R&&T,(5),(6),I_6\\ &(8)&&S\lor R&&T,(7),E_2 \end{aligned}\\ \therefore \{P\lor Q,P\rightarrow R,Q\rightarrow R\}\Longrightarrow S\lor R (1)(2)(3)(4)(5)(6)(7)(8)PQ¬PQQS¬PS¬SPPR¬SRSRPT,(1),E2PT,(2),(3),I6T,(4),E22PT,(5),(6),I6T,(7),E2{PQ,PR,QR}SR

      2. 利用CP规则

        例题 \color{White}\colorbox{Fuchsia}{例题} :求证 R → S R\rightarrow S RS 是前提 { P → ( Q → S ) , ¬ R ∨ P , Q } \{P\rightarrow (Q\rightarrow S),\neg R\lor P,Q\} {P(QS),¬RP,Q} 的有效结论。

        证明:
        ( 1 ) R P ( 附 加 前 提 ) ( 2 ) ¬ R ∨ P P ( 3 ) P P , ( 1 ) , ( 2 ) , I 5 ( 4 ) P → ( Q → S ) P ( 5 ) Q → S T , ( 3 ) , ( 4 ) , I 3 ( 6 ) Q P ( 7 ) S T , ( 5 ) , ( 6 ) , I 3 ( 8 ) R → S C P , ( 1 ) , ( 7 ) ∴ { P → ( Q → S ) , ¬ R ∨ P , Q } ⟹ R → S \begin{aligned} &(1)&&R&&P(附加前提)\\ &(2)&&\neg R\lor P &&P\\ &(3)&&P&&P,(1),(2),I_5 \\ &(4)&&P\rightarrow (Q\rightarrow S) &&P\\ &(5)&&Q\rightarrow S &&T,(3),(4),I_3 \\ &(6)&&Q&& P\\ &(7)&&S&&T,(5),(6),I_3\\ &(8)&&R\rightarrow S &&CP,(1),(7) \end{aligned}\\ \therefore \{P\rightarrow (Q\rightarrow S),\neg R\lor P,Q\}\Longrightarrow R\rightarrow S (1)(2)(3)(4)(5)(6)(7)(8)R¬RPPP(QS)QSQSRSP()PP,(1),(2),I5PT,(3),(4),I3PT,(5),(6),I3CP,(1),(7){P(QS),¬RP,Q}RS

    • 间接证明法:反证,矛盾,归谬法

      1. 反证法:将结论的否定加入到前提,证明新前提集合不相容(蕴含矛盾式)。即 ( A ⟹ B )    ⟺    ( A ∧ ¬ B ⟹ F ) (A\Longrightarrow B)\iff (A\land\neg B\Longrightarrow F) (AB)(A¬BF)

        例题 \color{White}\colorbox{Fuchsia}{例题} :n证明下面论述的有效性。在意甲比赛中,假如有四只球队,其比赛情况如下:如果国际米兰队获得冠军,则AC米兰队或尤文图斯队获得亚军;若尤文图斯队获得亚军,国际米兰队不能获得冠军;若拉齐奥队获得亚军,则AC米兰队不能获得亚军;最后,国际米兰队获得冠军。所以,拉齐奥队不能获得亚军。

        证明:

        P : P: P: 国际米兰队获得冠军; Q : Q: Q: AC米兰队获得亚军; R : R: R: 尤文图斯队获得亚军; S : S: S: 拉齐奥队获得亚军。则原命题可符号化为: P → Q ∨ R , R → ¬ P , S → ¬ Q , P ⟹ ¬ S P\rightarrow Q\lor R,R\rightarrow \neg P,S\rightarrow \neg Q,P\Longrightarrow \neg S PQR,R¬P,S¬Q,P¬S
        ( 1 ) ¬ ( ¬ S ) P ( 附 加 前 提 ) ( 2 ) S T , ( 1 ) , E 19 ( 3 ) S → ¬ Q P ( 4 ) ¬ Q T , ( 2 ) , ( 3 ) , I 3 ( 5 ) P → Q ∨ R P ( 6 ) P P ( 7 ) Q ∨ R T , ( 5 ) , ( 6 ) , I 3 ( 8 ) R T , ( 4 ) , ( 7 ) , I 5 ( 9 ) R → ¬ P P ( 10 ) ¬ P T , ( 8 ) , ( 9 ) , I 3 ( 11 ) P ∧ ¬ P    ⟺    F T , ( 6 ) , ( 10 ) , E 18 ∴ 拉 齐 奥 队 不 能 获 得 亚 军 \begin{aligned} &(1)&& \neg(\neg S) &&P(附加前提)\\ &(2)&& S &&T,(1),E_{19}\\ &(3)&& S\rightarrow \neg Q&&P\\ &(4)&& \neg Q &&T,(2),(3),I_3 \\ &(5)&& P\rightarrow Q\lor R&P \\ &(6)&& P&& P\\ &(7)&& Q\lor R&&T,(5),(6),I_3\\ &(8)&& R&&T,(4),(7),I_5\\ &(9)&& R\rightarrow \neg P&&P\\ &(10)&& \neg P&&T,(8),(9),I_3\\ &(11)&& P\land \neg P\iff F&&T,(6),(10),E_{18} \end{aligned}\\ \therefore 拉齐奥队不能获得亚军 (1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)¬(¬S)SS¬Q¬QPQRPQRRR¬P¬PP¬PFPP()T,(1),E19PT,(2),(3),I3PT,(5),(6),I3T,(4),(7),I5PT,(8),(9),I3T,(6),(10),E18

    • 消解法(归结推理法):机械(无脑)推理法

      • 消解原理(归结原理):根据 I 10 : ( P ∨ Q ) ∧ ( ¬ P ∨ R ) ⟹ ( Q ∨ R ) I_{10}:(P\lor Q)\land(\neg P\lor R)\Longrightarrow (Q\lor R) I10:(PQ)(¬PR)(QR)

      • 推理过程:对子句集合求消解式的过程

        • ⨀ \color{red}\bigodot 1.从 { G 1 , G 2 , . . . , G n , ¬ H } \{G_1,G_2,...,G_n,\neg H\} {G1,G2,...,Gn,¬H} 出发
        • ⨀ \color{red}\bigodot 2.将 G 1 ∧ G 2 ∧ . . . ∧ G n ∧ ¬ H G_1\land G_2\land...\land G_n\land\neg H G1G2...Gn¬H 转化成合取范式 P ∧ ( P ∨ R ) ∧ ( ¬ P ∨ Q ) ∧ . . . ∧ ( ¬ P ∨ R ) P\land (P\lor R)\land(\neg P\lor Q)\land...\land(\neg P\lor R) P(PR)(¬PQ)...(¬PR) 的形式
        • ⨀ \color{red}\bigodot 3.将合取范式的所有子句(析取式)构成子句集合 S = { P , P ∨ R , ¬ P ∨ Q , . . . , ¬ P ∨ R } S=\{P,P\lor R,\neg P\lor Q,...,\neg P\lor R \} S={P,PR,¬PQ,...,¬PR}
        • ⨀ \color{red}\bigodot 4.使用消解规则消除互补式(互反对),如 ( P ∨ Q ) ∧ ( ¬ P ∨ R ) ⟹ ( Q ∨ R ) (P\lor Q)\land(\neg P\lor R)\Longrightarrow (Q\lor R) (PQ)(¬PR)(QR) Q ∨ R Q\lor R QR 放入 S S S
        • ⨀ \color{red}\bigodot 5.重复上一步直到出现矛盾式(空子句)。
      • 例题 \color{White}\colorbox{Fuchsia}{例题} :如果公司的利润高,那么公司有个好经理或它是一个好企业及大体上是个好的经营年份。现在的情况是:公司的利润高,不是一个好的经营年份。证明公司有个好经理。

        证明:

        A : A: A: 公司的利润高; B : B: B: 公司有个好经理; C : C: C: 公司是个好企业; D : D: D: 是个好的经营年份。则原命题可符号化为: ( A → ( B ∨ ( C ∧ D ) ) ) ∧ A ∧ ¬ D ⟹ B (A\rightarrow (B\lor (C\land D)))\land A\land \neg D\Longrightarrow B (A(B(CD)))A¬DB
        令 P 1 : A → ( B ∨ ( C ∧ D ) )    ⟺    ¬ A ∨ ( B ∨ ( C ∧ D ) )    ⟺    ¬ A ∨ ( ( B ∨ C ) ∧ ( B ∨ D ) )    ⟺    ( ¬ A ∨ B ∨ C ) ∧ ( ¬ A ∨ B ∨ D ) ) P 2 : A P 3 : ¬ D \begin{aligned}令&P_1:A\rightarrow (B\lor (C\land D))&&\iff\neg A\lor (B\lor (C\land D))\\&&&\iff\neg A\lor ((B\lor C)\land (B\lor D)) \\&&&\iff(\neg A\lor B\lor C)\land (\neg A\lor B\lor D)) \\ &P_2:A\\ &P_3:\neg D\\ \end{aligned} P1:A(B(CD))P2:AP3:¬D¬A(B(CD))¬A((BC)(BD))(¬ABC)(¬ABD))
        S = { ¬ A ∨ B ∨ C , ¬ A ∨ B ∨ D , A , ¬ D , ¬ B } S=\{\neg A\lor B\lor C,\neg A\lor B\lor D,A,\neg D,\neg B\} S={¬ABC,¬ABD,A,¬D,¬B}
        ( 1 ) ¬ A ∨ B ∨ D P ( 2 ) A P ( 3 ) B ∨ D 由 ( 2 ) ( 3 ) 归 结 ( 4 ) ¬ B P ( 5 ) D 由 ( 3 ) ( 4 ) 归 结 ( 6 ) ¬ D P ( 7 ) Flase 由 ( 5 ) ( 6 ) 归 结 导 出 空 子 句 , 即 反 证 假 设 发 现 矛 盾 ∴ 公 司 有 个 好 经 理 \begin{aligned} &(1)&& \neg A\lor B\lor D &&P\\ &(2)&& A &&P\\ &(3)&& B\lor D && 由(2)(3)归结\\ &(4)&& \neg B && P\\ &(5)&& D && 由(3)(4)归结\\ &(6)&& \neg D &&P\\ &(7)&& \text{Flase} && 由(5)(6)归结\\ \end{aligned}\\ 导出空子句,即反证假设发现矛盾\therefore公司有个好经理 (1)(2)(3)(4)(5)(6)(7)¬ABDABD¬BD¬DFlasePP(2)(3)P(3)(4)P(5)(6),

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值