第二章 同余式

第二章 同余式

2.1 同余的定义和基本性质

  • 定义:设 m ∈ Z + m\in Z^+ mZ+ a , b ∈ Z a,b\in Z a,bZ,若 a a a b b b m m m 除所得的余数相同,则称 a a a b b b 关于模 m m m 同余,记为 a a a 同余 b b b m m m a ≡ b ( m o d m ) a\equiv b\pmod m ab(modm)
    • 性质
      1. 自反性(等价关系) a ≡ a ( m o d m ) a\equiv a\pmod m aa(modm)
      2. 对称性 a ≡ b ( m o d m ) ⟹ b ≡ a ( m o d m ) a\equiv b\pmod m\Longrightarrow b\equiv a\pmod m ab(modm)ba(modm)
      3. 传递性 a ≡ b ( m o d m ) , b ≡ c ( m o d m ) ⟹ a ≡ c ( m o d m ) a\equiv b\pmod m,b\equiv c\pmod m\Longrightarrow a\equiv c\pmod m ab(modm),bc(modm)ac(modm)
  • 定理一 a ≡ b ( m o d m )    ⟺    m ∣ ( a − b ) \color{red}a\equiv b\pmod m\iff m\mid(a-b) ab(modm)m(ab)
  • 定理二:若 a ≡ b ( m o d m ) , α ≡ β ( m o d m ) a\equiv b\pmod m,\alpha\equiv \beta\pmod m ab(modm),αβ(modm),则有
    1. a x + α y ≡ b x + β y ( m o d m ) ax+\alpha y\equiv bx+\beta y\pmod m ax+αybx+βy(modm),其中 x , y ∈ Z x,y\in Z x,yZ
    2. a α ≡ b β ( m o d m ) a\alpha \equiv b\beta \pmod m aαbβ(modm)
    3. a n ≡ b n ( m o d m ) \color{red}a^n\equiv b^n\pmod m anbn(modm),其中 n > 0 n>0 n>0
    4. f ( a ) ≡ f ( b ) ( m o d m ) f(a)\equiv f(b)\pmod m f(a)f(b)(modm),其中 f ( x ) ∈ Z [ x ] , f ( x ) = ∑ i = 0 l a i x i f(x)\in Z[x],f(x)=\sum\limits_{i=0}^l a_ix^i f(x)Z[x],f(x)=i=0laixi f ( x ) f(x) f(x) 为给定的整系数多项式)
  • 定理三:设 c , m ∈ Z c,m\in Z c,mZ,且 c a ≡ c b ( m o d m ) ca\equiv cb\pmod m cacb(modm),那么 a ≡ b ( m o d m gcd ⁡ ( c , m ) ) \color{red}a\equiv b\pmod {\dfrac{m}{\gcd(c,m)}} ab(modgcd(c,m)m)
  • 定理四:设 a ≡ b ( m o d m i ) , i = 1 , 2 , . . . , n a\equiv b\pmod {m_i},i=1,2,...,n ab(modmi),i=1,2,...,n,则 a ≡ b ( m o d [ m 1 , . . . , m n ] ) \color{red}a\equiv b\pmod{[m_1,...,m_n]} ab(mod[m1,...,mn])

2.2 剩余类和完全剩余系

  • 定义:设 m ∈ Z + m\in Z^+ mZ+,令 0 ≤ r ≤ m − 1 0\le r\le m-1 0rm1 C r = { q m + r ∣ q ∈ Z } C_r=\{qm+r|q\in Z\} Cr={qm+rqZ},则称 C 0 , C 1 , . . . , C m − 1 C_0,C_1,...,C_{m-1} C0C1,...,Cm1 为模 m m m剩余类

    其中 C 0 , C 1 , . . . , C m − 1 C_0,C_1,...,C_{m-1} C0C1,...,Cm1 两两互不相交且 Z = C 0 ⋃ C 1 ⋃ . . . ⋃ C m − 1 \color{red}Z=C_0\bigcup C_1\bigcup...\bigcup C_{m-1} Z=C0C1...Cm1

  • 定理一 x x x y y y 属于模 m m m 的同一个剩余类    ⟺    x ≡ y ( m o d m ) \iff \color{red}x\equiv y\pmod m xy(modm)

  • 定义:设 x i ∈ C i , i = 0 , 1 , . . . , m − 1 x_i\in C_i,i=0,1,...,m-1 xiCi,i=0,1,...,m1,则称 { x 0 , x 1 , . . . , x m − 1 } \{x_0,x_1,...,x_{m-1}\} {x0,x1,...,xm1} 为模 m m m 的一组完全剩余系(完系)。称 { 0 , 1 , . . . , m − 1 } \{0,1,...,m-1\} {0,1,...,m1} 为模 m m m最小非负完全剩余系

  • 定理三:设 ( k , m ) = 1 (k,m)=1 (k,m)=1,且 { x 1 , . . . , x m } \{x_1,...,x_m\} {x1,...,xm} 为模 m m m 的完系,则
    { k x 1 , . . . , k x m } \color{red}\{kx_1,...,kx_m\} {kx1,...,kxm}
    也为模 m m m 的一组完系。

  • 定理四:设 ( m 1 , m 2 ) = 1 (m_1,m_2)=1 (m1,m2)=1 { x 1 , . . . , x m 1 } \{x_1,...,x_{m_1}\} {x1,...,xm1} 为模 m 1 m_1 m1 的一组完系, { y 1 , . . . , y m 2 } \{y_1,...,y_{m_2}\} {y1,...,ym2} 为模 m 2 m_2 m2 的一组完系,则
    { m 2 x i + m 1 y j } 1 ≤ i ≤ m 1 , 1 ≤ j ≤ m 2 \color{red}\{m_2x_i+m_1y_j\}_{1\le i\le m_1,1\le j\le m_2} {m2xi+m1yj}1im1,1jm2
    构成模 m 1 m 2 m_1m_2 m1m2 的一组完系。

  • 定理五(乔拉定理 Chowla):设 n > 2 n>2 n>2 并设 { a 1 , . . . , a n } \{a_1,...,a_{n}\} {a1,...,an} { b 1 , . . . , b n } \{b_1,...,b_{n}\} {b1,...,bn} 为模 n n n 的一组完系,则 { a 1 b 1 , . . . , a n b n } \color{red}\{a_1b_1,...,a_nb_n\} {a1b1,...,anbn} 不是 n n n 的一组完系。

  • 定理六(威尔逊定理 Wilson):设 p p p 为素数,则
    ( p − 1 ) ! + 1 ≡ 0 ( m o d p ) 即    p ∣ ( p − 1 ) ! + 1 \color{red} (p-1)!+1\equiv 0\pmod p\\ 即\;p\mid(p-1)!+1 (p1)!+10(modp)p(p1)!+1

2.3 缩系

  • 定义:在每一个与 m m m 互素的剩余类中取一个元素出来,所形成的集合称为模 m m m 的简化剩余系或缩系

  • 定义 ∀ n ∈ Z + \forall n\in Z^+ nZ+,令 φ ( n ) = # { k ∈ Z ∣ 1 ≤ k ≤ n , ( k , n ) = 1 } \varphi(n)=\#\{k\in Z|1\le k\le n,(k,n)=1 \} φ(n)=#{kZ1kn,(k,n)=1}

    • p p p 为素数,则 φ ( p ) = p − 1 \varphi(p)=p-1 φ(p)=p1 φ ( p k ) = ( p − 1 ) p k − 1 = p k − p k − 1 \varphi(p^k)=(p-1)p^{k-1}=p^k-p^{k-1} φ(pk)=(p1)pk1=pkpk1
  • 定理一:模 m m m 的缩系含有 φ ( m ) \color{red}\varphi(m) φ(m) 个元素。

  • 定理二:设 a 1 , . . . , a φ ( m ) a_1,...,a_{\varphi(m)} a1,...,aφ(m) φ ( m ) \varphi(m) φ(m) 个均与 m m m 互素的整数,则它们构成模 m m m 的缩系    ⟺    \iff 它们关于模 m m m 两两互不同余。

  • 定理三:设 ( a , m ) = 1 (a,m)=1 (a,m)=1,且 x 1 , . . . , x φ ( m ) x_1,...,x_{\varphi(m)} x1,...,xφ(m) 为模 m m m 的一组缩系,则 a x 1 , . . . , a x φ ( m ) ax_1,...,ax_{\varphi(m)} ax1,...,axφ(m) 也为模 m m m 的缩系。

  • 定理四(欧拉定理)
    ( a , m ) = 1    ⟺    a φ ( m ) ≡ 1 ( m o d m ) (a,m)=1\iff \color{red}a^{\varphi(m)}\equiv 1\pmod m (a,m)=1aφ(m)1(modm)

  • 定理五(费马定理) ( a , p ) = 1    ⟺    a p − 1 ≡ 1 ( m o d p ) (a,p)=1\iff a^{p-1}\equiv 1\pmod p (a,p)=1ap11(modp);进而 ∀ a ∈ Z \forall a\in Z aZ,有 a p ≡ a ( m o d p ) a^p\equiv a\pmod p apa(modp)

  • 定理六:设 ( m 1 , m 2 ) = 1 (m_1,m_2)=1 (m1,m2)=1,若 { x i } i = 1 φ ( m 1 ) \{x_i\}_{i=1}^{\varphi(m_1)} {xi}i=1φ(m1) 为模 m 1 m_1 m1 的一组缩系, { y i } i = 1 φ ( m 2 ) \{y_i\}_{i=1}^{\varphi(m_2)} {yi}i=1φ(m2) 为模 m 2 m_2 m2 的一组缩系,那么
    { m 2 x i + m 1 y j } 1 ≤ i ≤ φ ( m 1 ) 1 ≤ j ≤ φ ( m 2 ) \color{red} \left\{m_2x_i+m_1y_j\right \}_{1\le i\le \varphi(m_1)}^{1\le j\le \varphi(m_2) } {m2xi+m1yj}1iφ(m1)1jφ(m2)
    构成模 m 1 m 2 m_1m_2 m1m2 的一组缩系。

    • 推论:设 ( m 1 , m 2 ) = 1 (m_1,m_2)=1 (m1,m2)=1,则 φ ( m 1 ) φ ( m 2 ) = φ ( m 1 m 2 ) \color{red}\varphi(m_1)\varphi(m_2)=\varphi(m_1m_2) φ(m1)φ(m2)=φ(m1m2)
  • 定理七:设 n = p 1 e 1 p 2 e 2 . . . p k e k n=p_1^{e_1}p_2^{e_2}...p_k^{e_k} n=p1e1p2e2...pkek,则
    φ ( n ) = n ( 1 − 1 p 1 ) . . . ( 1 − 1 p k ) \color{red}\varphi(n)=n\left(1-\dfrac{1}{p_1}\right)...\left(1-\dfrac{1}{p_k}\right) φ(n)=n(1p11)...(1pk1)

2.4 一次同余式

  • 定义:设 f ( x ) = a n x n + a n − 1 x n − 1 + . . . + a 1 x + a 0 f(x)=a_nx^n+a_{n-1}x^{n-1}+...+a_1x+a_0 f(x)=anxn+an1xn1+...+a1x+a0,其中 n > 0 , a i ∈ Z ( i = 0 , 1 , . . . , n ) n>0,a_i\in Z(i=0,1,...,n) n>0,aiZ(i=0,1,...,n),设 m > 0 m>0 m>0​,则
    f ( x ) ≡ 0 ( m o d m ) f(x)\equiv 0\pmod m f(x)0(modm) 叫做模 m m m 的同余式,若 a n ≢ 0 ( m o d m ) a_n\not\equiv 0\pmod m an0(modm),则 n n n 为次数。
    若存在 x 0 x_0 x0 满足 f ( x 0 ) ≡ 0 ( m o d m ) f(x_0)\equiv 0\pmod m f(x0)0(modm),则 x ≡ x 0 ( m o d m ) x\equiv x_0\pmod m xx0(modm) 叫做同余式的

  • 定理一:设 ( a , m ) = 1 , m > 0 (a,m)=1,m>0 (a,m)=1,m>0,则同余式
    a x ≡ b ( m o d m ) ( 1 ) \color{red}ax\equiv b\pmod m\qquad (1) axb(modm)(1)
    恰有一个解。

  • 定理二:设 ( a , m ) = 1 , m > 0 (a,m)=1,m>0 (a,m)=1,m>0,则 ( 1 ) (1) (1) 的唯一解为
    x ≡ b a φ ( m ) − 1 ( m o d m ) x\equiv ba^{\varphi(m)-1}\pmod m xbaφ(m)1(modm)

  • 定理三:设 ( a , m ) = d , m > 0 (a,m)={\color{red}d},m>0 (a,m)=d,m>0,则 ( 1 ) (1) (1) 有解    ⟺    ( a , m ) ∣ b \iff (a,m)\mid b (a,m)b

  • 定理四:若 d ∣ b d\mid b db,则 ( 1 ) (1) (1) 恰有 d d d 个模 m m m 的不同解。

  • 定理五:设 k ≥ 1 , a i , b ∈ Z k\ge 1,a_i,b\in Z k1,ai,bZ,则

    1. 同余方程
      a 1 x 1 + a 2 x 2 + . . . + a k x k + b ≡ 0 ( m o d m ) ( 2 ) \color{red}a_1x_1+a_2x_2+...+a_kx_k+b\equiv 0\pmod m \qquad (2) a1x1+a2x2+...+akxk+b0(modm)(2)
      有解    ⟺    d = ( a 1 , . . . , a k , m ) ∣ b \color{red}\iff d=(a_1,...,a_k,m)\mid b d=(a1,...,ak,m)b

    2. d ∣ b d\mid b db,则 ( 2 ) (2) (2) 恰有 d ⋅ m k − 1 \color{red}d\cdot m^{k-1} dmk1 个模 m m m 的不同解。

2.5 模数是素数的同余式: f ( x ) ≡ 0 ( m o d p ) f(x)\equiv 0\pmod p f(x)0(modp)

  • 定理一(Lagrange 定理):设 p p p 为素数,
    f ( x ) = a n x n + a n − 1 x n − 1 + . . . + a 1 x + a 0 ∈ Z [ x ] 为 整 系 数 多 项 式 a n ≢ 0 ( m o d p ) f(x)=a_nx^n+a_{n-1}x^{n-1}+...+a_1x+a_0\in Z[x] 为整系数多项式\\ a_n\not \equiv 0\pmod p f(x)=anxn+an1xn1+...+a1x+a0Z[x]an0(modp)
    f ( x ) ≡ 0 ( m o d p ) f(x)\equiv 0\pmod p f(x)0(modp) 至多有 n \color{red}n n 个解。

  • 定理二:设 f ( x ) ∈ Z [ x ] f(x)\in Z[x] f(x)Z[x],若 N ( f ( x ) ≡ 0 ( m o d p ) ) > deg ⁡ ( f ( x ) ) \color{red}N(f(x)\equiv 0\pmod p)>\deg(f(x)) N(f(x)0(modp))>deg(f(x)),则 f ( x ) f(x) f(x) 的所有系数 a i ≡ 0 ( m o d p ) a_i\equiv 0\pmod p ai0(modp),即 p ∣ a i    ( i = 0 , 1 , . . . , n ) \color{red}p\mid a_i\;(i=0,1,...,n) pai(i=0,1,...,n)

    N ( f ( x ) = 0 ) N(f(x)=0) N(f(x)=0) 代表 f ( x ) = 0 f(x)=0 f(x)=0 的解的个数

  • 定理三:设 p p p 为素数,则多项式
    f ( x ) = ( x − 1 ) ( x − 2 ) . . . ( x − p + 1 ) − x p − 1 + 1 \color{red}f(x)=(x-1)(x-2)...(x-p+1)-x^{p-1}+1 f(x)=(x1)(x2)...(xp+1)xp1+1
    的所有系数均被 p p p 整除

  • 定理四:设素数 p ≥ 5 p\ge 5 p5,则有

    1. ∑ k = 1 p − 1 ( p − 1 ) ! k ≡ 0 ( m o d p 2 ) \color{red}\sum\limits_{k=1}^{p-1}\dfrac{(p-1)!}{k}\equiv 0\pmod {p^2} k=1p1k(p1)!0(modp2)

    2. ∑ k = 1 p − 1 k ∗ ≡ 0 ( m o d p 2 ) , 即 ∑ k = 1 p − 1 1 k ≡ 0 ( m o d p 2 ) \sum\limits_{k=1}^{p-1}k^*\equiv 0\pmod {p^2},即\color{red}\sum\limits_{k=1}^{p-1} \dfrac{1}{k} \equiv 0\pmod {p^2} k=1p1k0(modp2),k=1p1k10(modp2)

      其中 k ∗ ∈ Z k^*\in Z kZ,使得 k ⋅ k ∗ ≡ 1 ( m o d p 2 ) k\cdot k^*\equiv 1\pmod {p^2} kk1(modp2)

    3. 2 p − 1 p − 1 ≡ 1 ( m o d p ) 2 \dfrac{2p-1}{p-1}\equiv 1\pmod p^2 p12p11(modp)2

2.6 孙子剩余定理(中国剩余定理)及其应用

  • 定理一:设 m 1 , m 2 , . . . , m k m_1,m_2,...,m_k m1,m2,...,mk k k k两两互素的正整数,则任意 b 1 , b 2 , . . . , b k ∈ Z b_1,b_2,...,b_k\in Z b1,b2,...,bkZ,有同余式组
    { x ≡ b 1 ( m o d m 1 ) x ≡ b 2 ( m o d m 2 ) . . . x ≡ b k ( m o d m k ) ( 1 ) \begin{cases} x\equiv b_1\pmod {m_1}\\ x\equiv b_2\pmod {m_2}\\ ...\\ x\equiv b_k\pmod {m_k}\\ \end{cases} \qquad (1) xb1(modm1)xb2(modm2)...xbk(modmk)(1)
    对于任意解 x 0 x_0 x0,有
    x 0 = ∑ i = 1 k M i M i ′ b i ( m o d m ) \color{red} x_0=\sum\limits_{i=1}^k M_iM_i'b_i\pmod{m} x0=i=1kMiMibi(modm)
    其中 m = m 1 m 2 . . . m k m=m_1m_2...m_k m=m1m2...mk M i = m m i M_i=\dfrac{m}{m_i} Mi=mim M i M i ′ ≡ 1 ( m o d m i )    ( 1 ≤ i ≤ k ) M_iM_i'\equiv 1\pmod {m_i}\;(1\le i\le k) MiMi1(modmi)(1ik)

    • 广义中国剩余定理:同余式组 ( 1 ) (1) (1) 有解 $\iff $ 对任意 1 ≤ i ≤ j ≤ k 1\le i\le j\le k 1ijk 均有 b i − b j ≡ 0 ( m o d ( m 1 , m j ) ) b_i-b_j\equiv 0\pmod{(m_1,m_j)} bibj0(mod(m1,mj)),即 ( m 1 , m 2 ) ∣ b i − b j \color{red}(m_1,m_2)\mid b_i-b_j (m1,m2)bibj
  • 定理二 { x ≡ b 1 ( m o d m 1 ) x ≡ b 2 ( m o d m 2 ) \begin{cases}x\equiv b_1\pmod {m_1}\\x\equiv b_2\pmod{m_2}\end{cases} {xb1(modm1)xb2(modm2) 有解    ⟺    ( m 1 , m 2 ) ∣ ( b 1 − b 2 ) \color{red}\iff (m_1,m_2)\mid (b_1-b_2) (m1,m2)(b1b2)

  • 定理三:设 m 1 , m 2 , . . . , m k m_1,m_2,...,m_k m1,m2,...,mk k k k两两互素的正整数, f ( x ) ∈ Z [ x ] f(x)\in Z[x] f(x)Z[x],则

    1. 同余式
      f ( x ) ≡ 0 ( m o d m ) ( 1 ) f(x)\equiv 0\pmod {m}\qquad (1) f(x)0(modm)(1)
      有解    ⟺    \iff 对每个 1 ≤ i ≤ k 1\le i\le k 1ik,同余式
      f ( x ) ≡ 0 ( m o d m i ) ( i = 1 , . . . , k ) ( 2 ) f(x)\equiv 0\pmod {m_i}(i=1,...,k) \qquad (2) f(x)0(modmi)(i=1,...,k)(2)
      均有解,其中 m = m 1 m 2 . . . m k m=m_1m_2...m_k m=m1m2...mk

    2. T T T 表示 ( 1 ) (1) (1) 的解数, T i T_i Ti 表示 ( 2 ) (2) (2) 的解数,那么 T = T 1 T 2 . . . T k T=T_1T_2...T_k T=T1T2...Tk,即
      N ( f ( x ) ≡ 0 ( m o d ∏ i = 1 k m i ) ) = ∏ i = 1 k N ( f ( x ) ≡ 0 ( m o d m i ) ) N\left(f(x)\equiv 0\pmod {\prod_{i=1}^k m_i}\right)=\prod_{i=1}^k N\left(f(x)\equiv 0\pmod {m_i}\right) N(f(x)0(modi=1kmi))=i=1kN(f(x)0(modmi))

2.7 模数为素数幂的同余式

f ( x ) = a n x n + . . . + a 1 x + a 0 ≡ 0 ( m o d p α ) , ( 1 ) n > 0 , p α ∤ a n f(x)=a_nx^n+...+a_1x+a_0\equiv 0\pmod {p^{\alpha}}, \qquad(1) \\ n>0,p^{\alpha}\nmid a_n f(x)=anxn+...+a1x+a00(modpα),(1)n>0,pαan

其中 p p p 是素数, α ≥ 1 \alpha\ge 1 α1

  • 定理一:设 p p p 为素数,且 f ( x ) ∈ Z [ x ] f(x)\in Z[x] f(x)Z[x],若同余式 f ( x ) ≡ 0 ( m o d p ) f(x)\equiv 0\pmod p f(x)0(modp) 有解 x 1 x_1 x1 满足 p ∤ f ( x 1 ) ′ \color{red}p\nmid f(x_1)' pf(x1),那么对于 ∀ k ∈ Z , k ≥ 1 \forall k\in Z,k \ge 1 kZ,k1,均存在 x k ∈ Z x_{k}\in Z xkZ,使得
    f ( x k ) ≡ 0 ( m o d p k ) 其 中 x k ≡ x k − 1 ( m o d p k − 1 ) \begin{aligned} \color{red}f(x_k)\equiv 0&\pmod {p^k}\\ \color{red}其中 x_k\equiv x_{k-1}&\pmod {p^{k-1}} \end{aligned} f(xk)0xkxk1(modpk)(modpk1)

    • 推论:设 f ( x ) ≡ 0 ( m o d p ) f(x)\equiv 0\pmod p f(x)0(modp) f ′ ( x ) ≡ 0 ( m o d p ) f'(x)\equiv 0\pmod p f(x)0(modp) 无公解,则同余式 f ( x ) ≡ 0 ( m o d p α ) f(x)\equiv 0\pmod {p^{\alpha}} f(x)0(modpα) 和同余式 f ( x ) ≡ 0 ( m o d p ) f(x)\equiv 0\pmod p f(x)0(modp) 的解数相同。

    例题 \color{White}\colorbox{Fuchsia}{例题} :求同余式 f ( x ) = x 3 − 4 x 2 + 5 x − 6 ≡ 0 ( m o d 27 ) f(x)=x^3-4x^2+5x-6\equiv 0\pmod {27} f(x)=x34x2+5x60(mod27) 的解。

    1. f ( x ) ≡ 0 ( m o d 3 ) , f ′ ( x ) ≡ 0 ( m o d 3 ) f(x)\equiv 0\pmod 3,f'(x)\equiv 0\pmod 3 f(x)0(mod3),f(x)0(mod3) 无公解,

      x ≡ 0 ( m o d 3 ) x\equiv 0\pmod 3 x0(mod3) f ( x ) ≡ 0 ( m o d 3 ) f(x)\equiv 0\pmod 3 f(x)0(mod3) 的唯一解,则以 x = 3 t 1 \color{red}x=3t_1 x=3t1 代入 f ( x ) ≡ 0 ( m o d 9 ) f(x)\equiv 0\pmod 9 f(x)0(mod9)
      f ( 0 ) + 3 t 1 f ′ ( 0 ) ≡ 0 ( m o d 9 ) f(0)+3t_1f'(0)\equiv 0\pmod 9 f(0)+3t1f(0)0(mod9)
      由于 f ( 0 ) ≡ − 6 ≡ 3 ( m o d 9 ) , f ′ ( 0 ) ≡ 5 ( m o d 9 ) f(0)\equiv -6\equiv 3\pmod 9,f'(0)\equiv 5\pmod 9 f(0)63(mod9),f(0)5(mod9),故
      3 + 3 t 1 ⋅ 5 ≡ 0 ( m o d 9 ) t 1 ≡ 1 ( m o d 3 ) 3+3t_1\cdot 5\equiv 0\pmod 9\\ t_1\equiv 1\pmod 3 3+3t150(mod9)t11(mod3)

    2. 此时 t 1 = 1 + 3 t 2 t_1=1+3t_2 t1=1+3t2

      故以 x = 3 t 1 = 3 + 9 t 2 x=3t_1=3+9t_2 x=3t1=3+9t2 f ( x ) ≡ 0 ( m o d 9 ) f(x)\equiv 0\pmod 9 f(x)0(mod9) 的唯一解,则以 x = 3 + 9 t 2 \color{red}x=3+9t_2 x=3+9t2 代入 f ( x ) ≡ 0 ( m o d 27 ) f(x)\equiv 0\pmod {27} f(x)0(mod27)
      f ( 3 ) + 9 t 2 f ′ ( 3 ) ≡ 0 ( m o d 27 ) f(3)+9t_2f'(3)\equiv 0\pmod {27} f(3)+9t2f(3)0(mod27)
      由于 f ( 3 ) ≡ 0 ( m o d 27 ) , f ′ ( 3 ) ≡ 8 ( m o d 27 ) f(3)\equiv 0\pmod {27},f'(3)\equiv 8\pmod {27} f(3)0(mod27),f(3)8(mod27)​,故
      0 + 9 t 2 ⋅ 8 ≡ 0 ( m o d 27 ) t 2 ≡ 0 ( m o d 3 ) 0+9t_2\cdot 8\equiv 0\pmod {27}\\ t_2\equiv 0\pmod {3} 0+9t280(mod27)t20(mod3)

    3. t 2 = 3 t 3 t_2=3t_3 t2=3t3

      故以 x = 3 + 9 t 2 = 3 + 27 t 3 x=3+9t_2=3+27t_3 x=3+9t2=3+27t3 f ( x ) ≡ 0 ( m o d 27 ) f(x)\equiv 0\pmod {27} f(x)0(mod27) 的唯一解,

      x ≡ 3 ( m o d 27 ) x\equiv 3\pmod {27} x3(mod27) f ( x ) ≡ 0 ( m o d 27 ) f(x)\equiv 0\pmod {27} f(x)0(mod27) 的唯一解。

  • 定理二:高维情况

2.8 整数的剩余表示

  • 定义:设 m i , m j > 0 , ( m i , m j ) = 1 , 0 < i < j ≤ k m_i,m_j>0,(m_i,m_j)=1,0<i<j\le k mi,mj>0,(mi,mj)=1,0<i<jk,一个整数 x x x 对于模式 m i ( 1 ≤ i ≤ k ) m_i(1\le i\le k) mi(1ik)​ 的剩余表示指序列
    ( < x > m 1 , < x > m 2 , . . . , < x > m k ) (<x>_{m_1},<x>_{m_2},...,<x>_{m_k}) (<x>m1,<x>m2,...,<x>mk) 记作 x ↔ ( < x > m 1 , < x > m 2 , . . . , < x > m k ) x\leftrightarrow (<x>_{m_1},<x>_{m_2},...,<x>_{m_k}) x(<x>m1,<x>m2,...,<x>mk)

2.9 逐步淘汰原则

  • 定理一(逐步淘汰原则/容斥原理):设 S 1 , . . . , S n S_1,...,S_n S1,...,Sn 为有限集 S S S 的子集,则有
    ∣ ⋂ i = 1 n S i ˉ ∣ = ∣ S \ ⋃ i = 1 n S i ∣ = ∣ S ∣ − ∑ i = 1 n ∣ S i ∣ + ∑ 1 ≤ i < j ≤ n ∣ S i ⋂ S j ∣ + . . . + ( − 1 ) n ∣ S 1 ⋂ . . . ⋂ S n ∣ \color{red}\left|\bigcap\limits_{i=1}^{n}\bar{S_{i}} \right|=\left|S\backslash\bigcup\limits_{i=1}^{n}S_i \right|=\left|S \right|-\sum\limits_{i=1}^n\left|S_i \right|+\sum\limits_{1\le i<j\le n}\left|S_i\bigcap S_j\right|+...+(-1)^n\left|S_1\bigcap...\bigcap S_n \right| i=1nSiˉ=S\i=1nSi=Si=1nSi+1i<jnSiSj+...+(1)nS1...Sn

    • 应用一:对于欧拉函数,有
      φ ( n ) = n ∏ p ∣ n ( 1 − 1 p ) \varphi(n)=n\prod\limits_{p\mid n}\left(1-\dfrac{1}{p}\right) φ(n)=npn(1p1)
  • 定理二:设 n > 1 , d ≥ 1 , r ∈ Z n>1,d\ge 1,r\in Z n>1,d1,rZ,且 ( r , d ) = 1 , d ∣ n (r,d)=1,d\mid n (r,d)=1,dn,那么集合 S = { r + d , r + 2 d , . . , r + n d ⋅ d } \color{red}S=\{r+d,r+2d,..,r+\frac{n}{d}\cdot d \} S={r+d,r+2d,..,r+dnd} 中与 n n n 互素的元素个数为 φ ( n ) φ ( d ) \color{red}\dfrac{\varphi(n)}{\varphi(d)} φ(d)φ(n)

2.10 Wolstenholme定理的推广

  • 定理一(Chowla定理):设 n > 1 n>1 n>1 ( n , 6 ) = 1 (n,6)=1 (n,6)=1,则
    ∑ m = 1 , ( m , n ) = 1 n 1 m ≡ 0 ( m o d n 2 ) \color{red}\sum\limits_{m=1,(m,n)=1}^n \dfrac{1}{m}\equiv 0\pmod {n^2} m=1,(m,n)=1nm10(modn2)
    • 引理一:设 n > 1 n>1 n>1 1 ≤ m ≤ n − 1 1\le m\le n-1 1mn1 ( m , n ) = 1 (m,n)=1 (m,n)=1,则
      1 m + 1 n − m ≡ n m ( n − m ) ( m o d n 2 ) \color{red}\dfrac{1}{m}+\dfrac{1}{n-m}\equiv \dfrac{n}{m(n-m)}\pmod{n^2} m1+nm1m(nm)n(modn2)
      1 m 2 + 1 m ( n − m ) ≡ n m 2 ( n − m ) ( m o d n 2 ) \color{red}\dfrac{1}{m ^2}+\dfrac{1}{m(n-m)}\equiv \dfrac{n}{m^2(n-m)}\pmod{n^2} m21+m(nm)1m2(nm)n(modn2)
    • 引理二:设 n > 1 n>1 n>1 ( n , 6 ) = 1 (n,6)=1 (n,6)=1,则存在 a ∈ Z a\in Z aZ ( a , n ) = 1 (a,n)=1 (a,n)=1,且对于任意素数 p p p,满足 p ∣ n p\mid n pn,均有
      a 2 ≡ 1 ( m o d p ) \color{red}a^2\equiv 1\pmod p a21(modp)

      可推出 a 2 ≡ 1 ( m o d n ) \color{red}a^2\equiv 1\pmod n a21(modn)

2.11 覆盖同余式组

  • 定义:对于同余式组
    { x ≡ a 1 ( m o d n 1 ) x ≡ a 2 ( m o d n 2 ) . . . x ≡ a k ( m o d n k ) ( 1 ) \begin{cases} x\equiv a_1\pmod {n_1}\\ x\equiv a_2\pmod {n_2}\\ ...\\ x\equiv a_k\pmod {n_k} \end{cases} \qquad (1) xa1(modn1)xa2(modn2)...xak(modnk)(1)

    • 若其中 1 < n 1 < n 2 < . . . < n k 1<n_1<n_2<...<n_k 1<n1<n2<...<nk 0 ≤ a i < n i ( 1 ≤ i ≤ k ) 0\le a_i< n_i(1\le i\le k) 0ai<ni(1ik)。若对于任意 x ∈ Z x\in Z xZ x x x 至少满足其中的一个,则称 ( 1 ) (1) (1) 为一组覆盖同余式组
    • 若其中 1 < n 1 ≤ n 2 ≤ . . . ≤ n k 1<n_1\le n_2\le ...\le n_k 1<n1n2...nk 0 ≤ a i < n i ( 1 ≤ i ≤ k ) 0\le a_i< n_i(1\le i\le k) 0ai<ni(1ik)。若每个 x ∈ Z x\in Z xZ x x x 满足其中一个且仅一个同余式,则称 ( 1 ) (1) (1) 为一组不相交的覆盖同余式组
  • 定理一:若 ( 1 ) (1) (1) 为覆盖同余式组,则有
    ∑ j = 1 k 1 n j > 1 \color{red}\sum\limits_{j=1}^k\dfrac{1}{n_j}>1 j=1knj1>1

  • 定理二:若 ( 1 ) (1) (1) 为不相交的覆盖同余式组,则有

    1. ∑ i = 1 k 1 n i = 1 \sum\limits_{i=1}^k\dfrac{1}{n_i}=1 i=1kni1=1
    2. ( n i , n j ) ≠ 1 , 1 ≤ i < j ≤ k (n_i,n_j)\ne 1,1\le i<j\le k (ni,nj)=1,1i<jk
    3. 不可能有 1 < n 1 < n 2 < . . . < n k 1<n_1<n_2<...<n_k 1<n1<n2<...<nk
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值