孙子定理与首一一元一次同余式组(模数两两互素的情况)

本文介绍了孙子定理(中国剩余定理)及其在解决模数两两互素的首一元一次同余式组问题上的应用。通过实例解析,展示了如何将非首一同余式组化简并利用孙子定理求解。
摘要由CSDN通过智能技术生成

前言

  对于非首一同余式组
a i x ≡ c i     m o d   m i ,   i = 1 , 2 , ⋯   , k { {a}_{i}}x\equiv { {c}_{i}}\text{ }\bmod { {m}_{i}},\text{ }i=1,2,\cdots ,k aixci modmi, i=1,2,,k
∀ i ,   a i x ≡ c i     m o d   m i \forall i,\text{ }{ {a}_{i}}x\equiv { {c}_{i}}\text{ }\bmod { {m}_{i}} i, aixci modmi若有解,由博文《初等数论 课堂笔记 第四章 – 一次同余式》中的第一个定理,解一定具有形式
x ≡ b i     m o d   m i x\equiv { {b}_{i}}\text{ }\bmod { {m}_{i}} xbi modmi
于是我们就把 a i x ≡ c i { {a}_{i}}x\equiv { {c}_{i}} aixci化简成等价的 x ≡ b i x\equiv { {b}_{i}} xbi。所以非首一同余式组若有解,则一定可以化为首一同余式组。
  于是我们只需要研究首一同余式组即可。

孙子定理(中国剩余定理)

  设 b 1 , ⋯   , b k ∈ Z ,   m 1 , ⋯   , m k ∈ Z > 0 { {b}_{1}},\cdots ,{ {b}_{k}}\in \mathbb{Z},\text{ }{ {m}_{1}},\cdots ,{ {m}_{k}}\in { {\mathbb{Z}}_{>0}} b1,,bkZ, m1,,mkZ>0 m 1 , ⋯   , m k { {m}_{1}},\cdots ,{ {m}_{k}} m1,,mk两两互素,令 m = ∏ i = 1 k m i m=\prod\limits_{i=1}^{k}{ { {m}_{i}}} m=i=1kmi m = m i M i ,   i = 1 , 2 , ⋯   , k m={ {m}_{i}}{ {M}_{i}},\text{ }i=1,2,\cdots ,k m=miMi, i=1,2,,k,则同余式组
{ x ≡ b 1     m o d   m 1 x ≡ b 2     m o d   m 2 ⋮ x ≡ b k     m o d   m k \left\{ \begin{aligned} & x\equiv { {b}_{1}}\text{ }\bmod { {m}_{1}} \\ & x\equiv { {b}_{2}}\text{ }\bmod { {m}_{2}} \\ & \vdots \\ & x\equiv { {b}_{k}}\text{ }\bmod { {m}_{k}} \\ \end{aligned} \right. xb1 modm1xb2 modm2xbk modmk
的解 x x x可以被唯一地表达为以下形式
x ≡ M 1 ′ M 1 b 1 + M 2 ′ M 2 b 2 + ⋯ + M k ′ M k b k     m o d   m x\equiv { {M}_{1}}'{ {M}_{1}}{ {b}_{1}}+{ {M}_{2}}'{ {M}_{2}}{ {b}_{2}}+\cdots +{ {M}_{k}}'{ {M}_{k}}{ {b}_{k}}\text{ }\bmod m xM1M1b1+M2M2b2++MkMkbk modm
其中 M i ′ M i ≡ 1     m o d   m i ,   i = 1 , 2 , ⋯   , k { {M}_{i}}'{ {M}_{i}}\equiv 1\text{ }\bmod { {m}_{i}},\text{ }i=1,2,\cdots ,k MiMi1 modmi, i=1,2,,k
证明

  1. 首先证明 x ≡ ∑ i = 1 k M i ′ M i b i     m o d   m x\equiv \sum\limits_{i=1}^{k}{ { {M}_{i}}'{ {M}_{i}}{ {b}_{i}}}\text{ }\bmod m xi=1kMiMibi modm确实是同余式组的解。
    m = ∏ i = 1 k m i = m i M i   ⇒   ∀ i ∀ j ,   j ≠ i ,   m i ∣ M j ⇒ x ≡ ∑ i = 1 k M i ′ M i b i ≡ M i ′ M i b i = ( M i ′ M i ) b i ≡ 1 × b i = b i     m o d   m i ,   ∀ i \begin{aligned} & m=\prod\limits_{i=1}^{k}{ { {m}_{i}}}={ {m}_{i}}{ {M}_{i}}\text{ }\Rightarrow \text{ }\forall i\forall j,\text{ }j\ne i,\text{ }\left. { {m}_{i}} \right|{ {M}_{j}} \\ & \Rightarrow x\equiv \sum\limits_{i=1}^{k}{ { {M}_{i}}'{ {M}_{i}}{ {b}_{i}}}\equiv { {M}_{i}}'{ {M}_{i}}{ {b}_{i}}=\left( { {M}_{i}}'{ {M}_{i}} \right){ {b}_{i}}\equiv 1\times { {b}_{i}}={ {b}_{i}}\text{ }\bmod { {m}_{i}},\text{ }\forall i \\ \end{aligned} m=i=1kmi=miMi  ij, j=i, miMjxi=1kMiMibiMiMibi=(MiMi)bi1×bi=bi modmi, i

  2. 其次证明同余式组的任意解可以表达成上述形式。
    x , x ′ x,x' x,x是同余式组的任意两个解,则有
    x ≡ x ′     m o d   m i ,   ∀ i ⇒ x ≡ x ′     m o d     l c m ( m 1 , m 2 , ⋯   , m k ) \begin{aligned} & x\equiv x'\text{ }\bmod { {m}_{i}},\text{ }\forall i \\ & \Rightarrow x\equiv x'\text{ }\bmod \text{ }lcm\left( { {m}_{1}},{ {m}_{2}},\cdots ,{ {m}_{k}} \right) \\ \end{aligned} xx modmi, ixx mod lcm(m1,m2,,mk)
    m 1 , m 2 , ⋯   , m k { {m}_{1}},{ {m}_{2}},\cdots ,{ {m}_{k}} m1,m2,,mk两两互素,有
    l c m ( m 1 , m 2 , ⋯   , m k ) = ∏ i = 1 k m i = m lcm\left( { {m}_{1}},{ {m}_{2}},\cdots ,{ {m}_{k}} \right)=\prod\limits_{i=1}^{k}{ { {m}_{i}}}=m lcm(m1,m2,,mk)=i=1kmi=m
    因此有
    x ≡ x ′     m o d   m x\equiv x'\text{ }\bmod m xx modm
    x ′ = ∑ i = 1 k M i ′ M i b i x'=\sum\limits_{i=1}^{k}{ { {M}_{i}}'{ {M}_{i}}{ {b}_{i}}} x=i=1kMiMibi,即有
    x ≡ ∑ i = 1 k M i M i b i     m o d   m x\equiv \sum\limits_{i=1}^{k}{ { {M}_{i}}{ {M}_{i}}{ {b}_{i}}}\text{ }\bmod m xi=1kMiMibi modm
    即同余式组的任意解 x x x都可以表达成上述形式。

例题

  1. 今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?

      问题等价于求解同余式
    { x ≡ 2     m o d   3 x ≡ 3     m o d   5 x ≡ 2     m o d   7 \left\{ \begin{aligned} & x\equiv 2\text{ }\bmod 3 \\ & x\equiv 3\text{ }\bmod 5 \\ & x\equiv 2\text{ }\bmod 7 \\ \end{aligned} \right. x2 mod3x3 mod5x2 mod7
    3 , 5 , 7 3,5,7 3,5,7两两互素,且
    M 1 = 5 × 7 = 35 ,   M 2 = 3 × 7 = 21 ,   M 3 = 3 × 5 = 15 ,   m = 3 × 5 × 7 = 105 { {M}_{1}}=5\times 7=35,\text{ }{ {M}_{2}}=3\times 7=21,\text{ }{ {M}_{3}}=3\times 5=15,\text{ }m=3\times 5\times 7=105 M1=5×7=35, M2=3×7=21, M3=3×5=15, m=3×5×7=105
    35 M 1 ′ ≡ ( 35 − 3 × 12 ) M 1 ′ ≡ 1     m o d   3 ⇔ − M 1 ′ ≡ 1     m o d   3 ⇔ M 1 ′ ≡ − 1 ≡ 2     m o d   3 \begin{aligned} & 35{ {M}_{1}}'\equiv \left( 35-3\times 12 \right){ {M}_{1}}'\equiv 1\text{ }\bmod 3 \\ & \Leftrightarrow -{ {M}_{1}}'\equiv 1\text{ }\bmod 3 \\ & \Leftrightarrow { {M}_{1}}'\equiv -1\equiv 2\text{ }\bmod 3 \\ \end{aligned} 35M1(353×12)M11 mod3M11 mod3M112 mod3
    21 M 2 ′ ≡ ( 21 − 5 × 4 ) M 2 ′ ≡ 1     m o d   5 ⇔ M 2 ′ ≡ 1     m o d   5 15 M 3 ′ ≡ ( 15 − 7 × 2 ) M 3 ′ ≡ 1     m o d   7 ⇔ M 3 ′ ≡ 1     m o d   7 \begin{matrix} \begin{aligned} & 21{ {M}_{2}}'\equiv \left( 21-5\times 4 \right){ {M}_{2}}'\equiv 1\text{ }\bmod 5 \\ & \Leftrightarrow { {M}_{2}}'\equiv 1\text{ }\bmod 5 \\ \end{aligned} & {} & \begin{aligned} & 15{ {M}_{3}}'\equiv \left( 15-7\times 2 \right){ {M}_{3}}'\equiv 1\text{ }\bmod 7 \\ & \Leftrightarrow { {M}_{3}}'\equiv 1\text{ }\bmod 7 \\ \end{aligned} \\ \end{matrix} 21M2(215×4)M21 mod5M21 mod5

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

此账号已停更

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值