认识线性调频信号(LFM)和脉冲压缩

微信公众号获取更多FPGA相关源码:
在这里插入图片描述

1. 线性调频(LFM)信号:

在时域中,一个理想的线性调频信号或脉冲持续时间为T秒,振幅为常量,中心频率为 f 0 {{f}_{0}} f0,相位 φ ( t ) \varphi (t) φ(t)随时间按一定规律变化。由于频率的线性调制,相位为时间的二次函数,当中心频率为 f 0 {{f}_{0}} f0时,信号的复数形式:
s ( t ) = r e c t ( t T ) e j ( 2 π f 0 t + π k t 2 ) s(t)=rect(\frac{t}{T}){{e}^{j(2\pi {{f}_{0}}t+\pi k{{t}^{2}})}} s(t)=rect(Tt)ej(2πf0t+πkt2)
其中,t是时间变量,单位为s;T为脉冲持续时间(周期);k为线性调频斜率,单位为Hz/s,即反映了频率的变化率。其相位(单位为rad)可表示为:
φ ( t ) = π k t 2 \varphi (t)=\pi k{{t}^{2}} φ(t)=πkt2
对时间微分得瞬时频率为:
f = 1 2 π d φ d t = k t f=\frac{1}{2\pi }\frac{d\varphi }{dt}=kt f=2π1dtdφ=kt
这说明频率是时间t的线性函数,斜率为k(单位Hz/s)。其中带宽指主要chirp能量占据的频率范围,或者为信号的频率漂移。带宽是chirp斜率与持续时间的乘积。
B W = ∣ k ∣ T BW = \left| k \right|T BW=kT
单位:Hz。由于与鸟鸣相似,故线性调频信号经常被称为chirp。

2.Matlab仿真

MATLAB仿真代码如下所示,仿真参数:B=200MHz,T=1us,fs=4*B, f 0 = 0 {{f}_{0}}=0 f0=0

clc
clear all
close all
B = 2e8;
T = 1e-6;%采样时间
fs = 4*B;%采样率
K = B/T;
N =  round( T / (1/fs) );%采样点数
t = linspace( -T/2 , T/2 , N);%选取采样点

% 线性调频信号 s(t)=a(t)cos[2πf0 t+πkt^2],a(t)是包络,f0是调频频率
A_lfm = 10;
f0 = 0;%中心频率
%y_lfm = A_lfm*cos(2*pi*f_lfm*t+pi*K*t.^2);
y_lfm = A_lfm*exp(1j*(2*pi*f0*t+pi*K*t.^2));
%y_lfm = awgn(y_lfm ,2);%添加高斯白噪声

fai = pi*K*t.^2;
ft = f0+K*t;

figure
subplot(3,1,1)
plot(1e6*t,real(y_lfm));
xlabel('t/us');
title('线性调频信号实部波形');
subplot(3,1,2)
plot(1e6*t,imag(y_lfm));
xlabel('t/us');
title('线性调频信号虚部波形');

subplot(3,1,3)
freq = linspace(-fs/2,fs/2,N);%频域采样
Sf = fftshift( fft(y_lfm) );
plot( freq/1e6,abs(Sf) );
xlabel('f/MHz');
title('线性调频信号频谱');

figure
subplot(2,1,1)
plot(1e6*t,1e-6*ft);
xlabel('t/us');
ylabel('f/MHz');
title('调频曲线');

subplot(2,1,2)
plot(1e6*t,fai);
xlabel('t/us');
ylabel('相位/rad');
title('相位曲线');

[a,b]=xcorr(y_lfm);
d=abs(a);
d=d/max(d);
d=20*log10(d+1e-6);
figure
plot(b,d);
title('线性调频自相关函数');
grid on;

MATLAB仿真结果如下所示:

LFM时域

相位和调频曲线

3.脉冲压缩

要探究LFM的脉冲压缩性能,对其做自相关即可:

[a,b]=xcorr(y_lfm);
d=abs(a);
d=d/max(d);
d=20*log10(d+1e-6);
figure
plot(b,d);
title('线性调频自相关函数');
grid on;

LFM脉冲压缩结果如下:

LFM脉冲压缩

主副瓣比

可以看到主副瓣比,只有13.5dB左右。采用匹配滤波进行脉冲压缩时,一个显著的问题是输出信号的旁瓣水平较高。这意味着当雷达系统面对多个目标时,强目标信号的旁瓣可能会掩盖或淹没较弱的目标信号,进而影响到对弱目标的准确检测。因此,抑制脉冲压缩信号的旁瓣水平,成为了雷达信号处理中必须面对和解决的问题。

雷达系统为了实现更远的探测距离和更高的距离分辨率,采用了大时宽带宽积信号和脉冲压缩技术。但匹配滤波方法虽然带来了最佳的性能,却也带来了旁瓣水平过高的问题,这要求雷达信号处理系统必须寻求有效的旁瓣抑制方法。

微信公众号获取更多FPGA相关源码:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值