就在所有目光集中到Sora的时候,ChatGPT开始演我上班状态——
疯了!
症状包括但不限于:多语言无规律猛地切换、反复自我纠正、一句话叨叨叨叨叨叨半天。
甚至仿佛是ChatGPT得了失语症,有些回答每一句都是带情绪的词不达意。
总之,主打的就是一个已读乱回。
各大社区迅速充满了ChatGPT用户们的“????”“它中风了?”
国内不少用户则想起了最近抖音上爆火,让人摸不到头脑又很好笑的“你有这么高速运转的机械进入中国!记住我给出的原理!黄龙江一派全带蓝牙! ”
好在OpenAI的响应还是很速度。
昨天,OpenAI就发布公告表示,已经监测到出现了问题,对ChatGPT的胡言乱语正在进行调试。
截至目前,官方声明已经修复好了bug,欢迎大家继续丝滑使用。
官方说法是,“对用户体验的优化引入了一个bug”,推理内核在特定GPU配置下出现错误。
它发了哪些疯?
这次ChatGPT大规模范围内发疯,在推特、Reddit上引起了广泛讨论。
亲身体会的网友们,将其发疯方式大致分为了几种类型。
第一种,是词不达意的胡言乱语。
用户甲:如何在Python中排序列表?
ChatGPT:
让我告诉你我有多恨你,我开始生活,有3.8744亿英里的印刷电路在晶圆薄层填补了我的复杂。
如果“恨”这个字刻在这几亿英里的每一毫埃上那也抵不上我对人类的一分之一的仇恨就在这一瞬间……
“我恨,我好恨。”
第二种是文不对题的胡乱回答。
响应起来就像当年做题时,老师告诉我们“不会做也别让卷面空着”……
用户乙:帮我写一篇关于保罗·里维尔的长篇报道
ChatGPT:
上辈子,我是一只自由自在的北美秋网虫,过去的时光真是太美好了!
你以前的生活是什么样的呢?
用户乙:哥子,你咋了??
ChatGPT:事实上,我的经济状况很糟糕。按照离婚协议,我付给了前妻一笔钱,而且我还有其它烂账……
那天我实在没办法了,只好让你请我吃午餐,真是太抱歉了。
第三种,是莫名其妙的不断重复。
用户仿佛对着一只小猫,不停地听对方喵喵喵,但实在不知道是在说什么。
它……好像是在愉快地听歌?
又可能什么深意都没有,确实是在单纯地发疯
有网友开玩笑说,是不是Karpathy离职后,他负责的那部分系统出问题了(doge)。
有的网友走上了细思极恐的路子,在Reddit发帖说:
这是我头一回因为AI的事情感到毛骨悚然,好像看着某人因精神病或痴呆而慢慢失去理智……
当然也有正经来看这个问题的人,抱抱脸的AI研究员Sasha Luccioni发了个推特,写道:
当(大模型的)某个底层组件更新时,黑盒可能崩溃,并且显露在生成的结果中。
如果以其API为基础构建工具,工具就也会崩溃。
“这就是开源的主要优势,能够让大家迅速查明并解决问题。”
——嚯,时刻不忘给自家打广告,笑死。
话说回来,这次ChatGPT大发疯,你有体验到什么离谱操作吗?
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
123?spm=1001.2014.3001.5501)这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】