AI大模型已成为新一代人工智能产业的核心引擎,深度赋能着我国经济社会的多领域,引领通用人工智能新纪元,催生着科技革命与产业变革的浪潮。
近期,OpenAI发布了一款名为GPT-4o的新旗舰生成式AI模型,其计划在未来几周内持续推出迭代版本。这一消息显示,AI领域的创新和进步正在呈现出爆发式的态势,为未来的科技发展描绘出更为丰富的蓝图。
多模态AI技术作为人工智能的核心方向之一,正日益受到关注。**它涵盖了生成算法、大型模型以及多模态技术的进步,这些突破将推动人工智能应用的质量和性能变革。**通过综合多个数据源进行分析和处理,多模态AI技术为各行业带来了全新的可能性,为社会发展提供了强大的动力。
今年以来,全球范围内的AI大模型持续升级迭代,海外的Sora、国内的Kimi、昆仑天工AI等,都在不断推动着人工智能技术的前沿。这种迅猛的发展势头,使得AI大模型成为科技竞争的焦点、产业变革的先锋、经济增长的新引擎。
在云智一体的基础设施支持下,多模态AI技术的应用场景不断拓展,从办公、电商、娱乐、教育等领域,延伸至医疗诊断、自动驾驶等更为复杂的任务。这种全面的应用势头将加速推动AI大模型在各行业的应用,进一步引领全社会走向智能化新时代。
为此,韭韭老刘特意为大家梳理了五家公司,以供大家参考,避免大家找不到,建议收藏转发关注!
第一家:汤姆猫;公司协同西湖心辰团队在多模态、降低推理成本、对话时长等方向取得较大进展。
第二家:因赛集团;公司基于各类第三方大型模型和自研营销领域专用的AIGC多模态模型,实现文本、图片、视频等多种形式的智能化内容生成。
第三家:网达软件;上海蛙色网络科技有限公司产品可以实现AI抠图生成嵌入视频/图文,位置匹配系统可实现多模态动态交互,打造科技创意效果。
第四家:魅视科技;运用人工智能技术,公司开发了Ai体感调度控制系统,该技术的应用实现了从可视化图形交互向人机自然交互的转变升级。
第五家:苏州科达;在人工智能技术领域,公司深入研发基于深度学习的AI技术,紧跟人工智能技术前沿趋势,于2023年7月正式推出了KD-GPT大模型,包括多模态大模型、AIGC图像大模型和行业大模型已经初具雏形,并开始在实际项目中投入应用。在云存储和大数据技术领域,公司掌握了云存储的核心技术,在大容量、高并发等存储应用领域拥有自主知识产权,自2020年以来承建了100多个10PB以上的分布式云存储项目。
随着“人工智能+”行动的深入推进,科技公司对AI领域的投入资金、人力和技术研发也在不断增加。这一多重利好因素将推动大模型技术的快速发展,多模态AI大模型有望引领新一轮的产业革命,为社会带来更多创新和发展机遇。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。