综述:大语言 RDRec:如何利用大语言模型做推荐系统模型在信息抽取上的应用

推荐系统

RDRec: Rationale Distillation for LLM-based Recommendation

大型语言模型(LLM)通过文本提示实现用户与物品间的有效语义推理,其推荐模型备受瞩目。然而,多数方法未深入探究交互背后的逻辑,如用户偏好与物品属性,这限制了 LLM 在推荐领域的推理深度。本文创新性地提出了原理蒸馏推荐器(RDRec),一种精简模型,旨在汲取更大语言模型(LM)生成的深层原理。借助用户及物品相关评论中的原理,RDRec 精准描绘了推荐对象的轮廓。实验结果显示,RDRec 在 Top-N 及序列推荐任务中均达到了业界顶尖水平。源代码已公开于https://github.com/WangXFng/RDRec。

https://arxiv.org/abs/2405.10587

背景

众所周知,大语言模型强大的推理能力已经得到了大家的广泛认可,也因此大语言模型在推荐系统领域也取得了一些发展,比如:新闻、商品推荐,可解释性推荐等多方面。另外,在Zero Shot / Few Shot和冷启动推荐等领域也是研究热点。

最直接的方法就是直接把用户信息和商品ID通过提示词进行预测;以及最近提出的P5范式,通过将用户-商品交互、用户行为序列和评论转化为文本到文本的提示,为LLMs推荐系统提供了更深层次的语义理解;还有通过蒸馏技术改进P5方法,提升了性能、缩短了推理时间。

为了解决这个问题,本文作者提出了一种推荐系统框架:RDRec(Rationale Distillation),该框架可以从用户所有有关的评论或关于商品的评论中,派生出更精确的用户和商品档案,用于推荐系统,如下图(cd)所示。

图片

RDRec 框架

RDRect框架包括两个核心阶段:交互逻辑蒸馏和基于逻辑的推荐。

交互逻辑蒸馏

作者采用了一种简洁的提示模板来从用户评论中提取出用户偏好和商品特征:

某用户购买了一件商品,并评论说‘{评论内容}’。请用两句话分别阐述用户的喜好和商品的特点。

图片

如上图,通过这个提示词模板,输入用户的产品和评论后,就可以了解用户的偏好和商品属性。

用户评论结合这个提示模板输入到LLMs中,以生成用户偏好和商品属性的输出。

具体来说,对于一个由用户u、商品i和对应的评论r(u,i) 组成的交互三元组,通过逻辑蒸馏过程得到一个包含用户偏好pu,i和商品属性au,i的四元组(u, i, pu,i, au,i)。这样,就能够在推荐过程中更精确地捕捉和反映用户的真实意图和商品的关键特征。

逻辑驱动的推荐系统

RDRec 模型以 PrOmpt Distillation (POD) 技术为支撑,将推荐任务巧妙地转化为基于大语言模型的文本生成问题,并通过任务模板提炼出连续的提示向量:

  • • (i)顺序推荐,通过分析用户的历史交互顺序来预测下一个感兴趣的商品;
  • • (ii)top-N推荐,为用户推荐他们尚未接触的前N个热门商品;
  • • (iii)交互解释生成,为用户的每一次交互行为提供清晰的解释。

与POD相比,RDRec 进一步引入了用户偏好和商品属性的逻辑生成任务,以丰富推荐系统的深度和精准度。

效果评估

图片

上面两个表展示了RDRec与基线模型的对比效果。RDRec在H@k和N@k指标上始终超越了紧随其后的POD和RSL;在顺序推荐上,H@k和N@k上提升了0.5%至9.8%,在top-N推荐的H@k和N@k上更是实现了12.1%至42.2%的显著增长

还发现RDRec在top-N推荐任务中相比顺序推荐有更大幅度的提升。这表明,精确地界定用户偏好和商品特征在推荐未知的top-N候选选项时更为关键,而顺序推荐系统则更多地依赖于捕捉用户行为的正确模式,以预测其下一步的选择。

图片

通过消融实验,进一步检验了逻辑蒸馏的效果。上表的结果显示,从用户评论中提炼出用户偏好和商品特征,对于顺序推荐和top-N推荐均能带来积极影响。尤其值得注意的是,为商品建立详尽的档案在top-N推荐中通常更为有效,而在Sports和Beauty数据集上,为用户建立详尽的档案则对顺序推荐更为有利。


如何学习AI大模型?

作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

四、AI大模型商业化落地方案

img

作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值