RAG 实战|用 StarRocks + DeepSeek 构建智能问答与企业知识库

RAG 和向量索引简介

RAG(Retrieval-Augmented Generation,检索增强生成)是一种结合外部知识检索与 AI 生成的技术,弥补了传统大模型知识静态、易编造信息的缺陷,使回答更加准确且基于实时信息。

1、RAG 的核心流程

  1. 检索(Retrieval)

    1. 用户输入问题后,RAG 从外部数据库(如维基百科、企业文档、科研论文等)检索相关内容。
    2. 检索工具可以是向量数据库、搜索引擎或传统数据库。
  2. 生成(Generation)

    1. 将检索到的相关信息与用户输入一起输入生成模型(如 GPT、LLaMA 等),生成更准确的回答。
    2. 模型基于检索内容“增强”输出,而非仅依赖内部参数化知识。

img

上图展示了 RAG 的标准流程。首先,图片、文档、视频和音频等数据经过预处理,转换为 Embedding 并存入向量数据库。Embedding 通常是高维 float 数组,借助向量索引(如 HNSW、IVF)进行相似性搜索,加速高效检索。

向量索引通过近似最近邻(ANN)算法优化查询效率,减少高维计算负担。语义搜索匹配用户问题与知识库中的相关内容,使回答基于真实信息,从而降低大模型的“幻觉”风险,提升回答的自然性和可靠性。

StarRocks + DeepSeek 的典型 RAG 应用场景

DeepSeek 负责生成高质量 Embedding 和回答,StarRocks 提供实时高效的向量检索,二者结合可构建更智能、更精准的 AI 解决方案。

1

企业级知识库

适用场景

  • 企业内部知识库(文档搜索、FAQ)
  • 法律、金融、医药等专业领域问答
  • 代码搜索、软件开发文档查询

方案

  1. 文档嵌入(DeepSeek 负责): 将企业知识库、FAQ、技术文档等数据转换为向量。

  2. 存储+索引(StarRocks 负责): 使用 HNSW 或 IVFPQ 存储向量存储在 StarRocks 中,支持高效检索。

  3. 检索增强生成(RAG 负责): 用户输入问题 → DeepSeek 生成查询向量 → StarRocks 进行向量匹配 → 返回相关文档 → DeepSeek 结合文档生成最终回答。

2

AI 客服与智能问答

适用场景

  • 智能客服(银行、证券、电商)
  • 法律、医疗等专业咨询
  • 技术支持自动问答

方案

  1. 客户对话日志嵌入(DeepSeek 负责): 训练 LLM 处理用户意图,转换历史聊天记录为向量。
  2. 存储+索引(StarRocks 负责): 采用向量索引让客服系统能够高效查找相似案例。
  3. 检索增强(RAG 负责): 结合历史客服对话 + 知识库 + DeepSeek LLM 生成答案。

示例流程

  • 用户问:“我如何更改银行卡预留手机号?”
  • StarRocks 检索到 3 个最相似的客户服务记录
  • DeepSeek 结合这 3 条历史记录 + 预设 FAQ,生成精准回答

操作演示

系统组成

  • DeepSeek:提供文本向量化(embedding)和答案生成能力
  • StarRocks:高效存储和检索向量数据(3.4+版本支持向量索引)

实现流程

步骤负责组件具体实现
1. 环境准备OllamaStarRocks用 Ollama 在本地机器上便捷地部署和运行大型语言模型
2. 数据向量化DeepSeek-Embedding文本 → 3584 维向量
3. 存储向量StarRocks创建表,存入向量
4. 近似最近邻搜索StarRocks 向量索引IVFPQ / HNSW 检索
5. 检索增强模拟 RAG 逻辑结合检索数据
6. 生成答案DeepSeek LLM生成基于真实数据的回答

1

环境准备

1.1 DeepSeek 本地部署

Tips: 以下内容使用的是 macbook 进行 demo 演示

1.1.1 使用 ollama 安装本地模型

在本地部署 DeepSeek 时,Ollama 主要起到模型管理和提供推理接口的作用,支持运行多个不同的 LLM,并允许用户在本地切换和管理不同的模型。

  • 下载 ollama:https://ollama.com/
  • 安装 deepseek-r1:7b
# 该命令会自动下载并加载模型
ollama run deepseek-r1:7b

img

Tips: 如果想使用云端 LLM(如 DeepSeek 的官方 API),需要获取并填写 API Key

访问 DeepSeek 官网(https://platform.deepseek.com)后注册账号并登录;在仪表盘中创建 API Key(通常在 “API Keys” 或 “Developer” 部分),复制生成的密钥(如 sk-xxxxxxxxxxxxxxxx)。

1.1.2 Deepseek 初步使用

启动 deepseek

执行 ollama run deepseek-r1:7b 直接进入交互模式

1.1.3 Deepseek 性能优化

直接在命令行设置参数:(参数单次生效)


OLLAMA_GPU_LAYERS=35 \
OLLAMA_CPU_THREADS=6 \
OLLAMA_BATCH_SIZE=128 \
OLLAMA_CONTEXT_SIZE=4096 \
ollama run deepseek-r1:7b

1.1.4 DeepSeek 使用

img

显而易见:直接使用 deepseek 进行问答,返回的答案是不符合预期的,需要对知识进行修正

1.2 StarRocks 准备工作

1.2.1 集群部署

版本需求:3.4 及以上

1.2.2 配置设置

打开 vector index

ADMIN SET FRONTEND CONFIG ("enable_experimental_vector" = "true");

1.2.3 建库建表

建库:

create database knowledge_base;

建表:存储知识库向量

CREATE TABLE enterprise_knowledge (
    id  BIGINT AUTO_INCREMENT,
    content TEXT NOT NULL,
    embedding ARRAY<FLOAT> NOT NULL,
    INDEX vec_idx (embedding) USING VECTOR (
        "index_type" = "hnsw",
        "dim" = "3584",
        "metric_type" = "l2_distance",
        "M" = "16",
        "efconstruction" = "40"
    )
) ENGINE=OLAP
PRIMARY KEY(id)
DISTRIBUTED BY HASH(id) BUCKETS 1
PROPERTIES (
    "replication_num" = "1"
    );

Tips: DeepSeek 的 deepseek-r1:7b 模型(7B 参数版本)默认生成高维嵌入向量,通常是 3584 维

2

将文本转成向量

测试通过 deepseek 将文本转为 3584 维向量

curl -X POST http://localhost:11434/api/embeddings -d '{"model": "deepseek-r1:7b", "prompt": "产品保修期是一年。"}'

下面将转化的向量数据保存在 StarRocks 中

3

知识存储(存储向量到 StarRocks)

import pymysql
import requests

def get_embedding(text):
    url = "http://localhost:11434/api/embeddings"
    payload = {"model": "deepseek-r1:7b", "prompt": text}
    response = requests.post(url, json=payload)
    response.raise_for_status()
    return response.json()["embedding"]

try:
    content = "StarRocks 的愿景是能够让用户的数据分析变得更加简单和敏捷。"
    embedding = get_embedding(content)

    # 将 Python 列表转换为 StarRocks 的数组格式
    embedding_str = "[" + ",".join(map(str, embedding)) + "]"# 例如:[0.1,0.2,0.3]

    conn = pymysql.connect(
        host='X.X.X.X',
        port=9030,
        user='root',
        password='sr123456',
        database='knowledge_base'
    )
    cursor = conn.cursor()

    # 使用格式化的数组字符串
    sql = "INSERT INTO enterprise_knowledge (content, embedding) VALUES (%s, %s)"
    cursor.execute(sql, (content, embedding_str))
    conn.commit()
    print(f"Inserted: {content} with embedding {embedding[:5]}...")

except requests.RequestException as e:
    print(f"Embedding API error: {e}")
except pymysql.Error as db_err:
    print(f"Database error: {db_err}")
finally:
    if'cursor'in locals():
        cursor.close()
    if'conn'in locals():
        conn.close()

操作演示

img

4

知识提取

import pymysql
import requests


# 获取嵌入向量的函数
def get_embedding(text):
    url = "http://localhost:11434/api/embeddings"
    payload = {"model": "deepseek-r1:7b", "prompt": text}
    response = requests.post(url, json=payload)
    response.raise_for_status()
    return response.json()["embedding"]


# 从 StarRocks 查询相似内容的函数
def search_knowledge_base(query_embedding):
    try:
        conn = pymysql.connect(
            host='39.98.110.249',
            port=9030,
            user='root',
            password='sr123456',
            database='knowledge_base'
        )
        cursor = conn.cursor()

        # 将查询向量转换为 StarRocks 的数组格式
        embedding_str = "[" + ",".join(map(str, query_embedding)) + "]"

        # 使用 L2 距离搜索最相似的记录
        sql = """
        SELECT content, l2_distance(embedding, %s) AS distance
        FROM enterprise_knowledge
        ORDER BY distance ASC
        LIMIT 1
        """
        cursor.execute(sql, (embedding_str,))
        result = cursor.fetchone()

        if result:
            return result[0]  # 返回最匹配的 content
        else:
            return"未找到相关信息。"

    except pymysql.Error as db_err:
        print(f"Database error: {db_err}")
        return"查询失败。"
    finally:
        if'cursor'in locals():
            cursor.close()
        if'conn'in locals():
            conn.close()

# 主流程
try:
    query = "StarRocks 的愿景是什么?"
    query_embedding = get_embedding(query)  # 将查询转化为向量
    answer = search_knowledge_base(query_embedding)  # 从知识库检索答案
    print(f"问题: {query}")
    print(f"回答: {answer}")

except requests.RequestException as e:
    print(f"Embedding API error: {e}")
except Exception as e:
    print(f"Error: {e}")

执行效果

img

补充说明:到目前为止的流程仅依赖 StarRocks 进行向量检索,未利用 DeepSeek LLM 进行生成,导致回答生硬且缺乏上下文整合,影响自然性和准确性。为提升效果,应引入 RAG 机制,使检索结果与生成模型深度融合,从而优化回答质量并减少幻觉问题。

5

加入 RAG 增强

5.1 将查询知识库的结果,返回给 DeepSeek LLM ,优化回答质量

# 构造 RAG Prompt
def build_rag_prompt(query, retrieved_content):
    prompt = f"""
    [系统指令] 你是企业智能客服,基于以下知识回答用户问题:
    [知识上下文] {retrieved_content}
    [用户问题] {query}
    """
    return prompt

# 调用 DeepSeek 生成回答
def generate_answer(prompt):
    url = "http://localhost:11434/api/generate"
    payload = {"model": "deepseek-r1:7b", "prompt": prompt}

    try:
        response = requests.post(url, json=payload)
        response.raise_for_status()

        full_response = ""
        for line in response.text.splitlines():
            if line.strip():  # 过滤空行
                try:
                    json_obj = json.loads(line)
                    if"response"in json_obj:
                        full_response += json_obj["response"]  # 只提取答案
                    if json_obj.get("done", False):
                        break
                except json.JSONDecodeError as e:
                    print(f"JSON 解析错误: {e}, line: {line}")

        return clean_response(full_response.strip())  # 处理并去掉 <think>XXX</think>
    except requests.exceptions.RequestException as e:
        print(f"请求失败: {e}")
        return"生成失败。"

5.2 创建 RAG 过程表:

用于记录用户问题、检索结果和生成回答,保存上下文,方便进行长对话,至于长对话,用户可自行探索。

customer_service_log 表建表语句如下:

CREATE TABLE customer_service_log (
    id BIGINT AUTO_INCREMENT,
    user_id VARCHAR(50),
    question TEXT NOT NULL,
    question_embedding ARRAY<FLOAT> NOT NULL,
    retrieved_content TEXT,
    generated_answer TEXT,
    timestamp DATETIME NOT NULL,
    feedback TINYINT DEFAULT NULL
) ENGINE=OLAP
PRIMARY KEY(id)
DISTRIBUTED BY HASH(id) BUCKETS 1
PROPERTIES (
    "replication_num" = "1"
);

6

优化后的版本

6.1 知识提取代码

6.1.1 *知识提取*
import pymysql
import requests
import json
from datetime import datetime
import logging
import re


# 获取嵌入向量
def get_embedding(text):
    url = "http://localhost:11434/api/embeddings"
    payload = {"model": "deepseek-r1:7b", "prompt": text,"stream": "true"}
    response = requests.post(url, json=payload)
    response.raise_for_status()
    return response.json()["embedding"]


# 从 StarRocks 检索知识
def search_knowledge_base(query_embedding):
    try:
        conn = pymysql.connect(
            host='X.X.X.X',
            port=9030,
            user='root',
            password='sr123456',
            database='knowledge_base'
        )
        cursor = conn.cursor()
        embedding_str = "[" + ",".join(map(str, query_embedding)) + "]"
        sql = """
        SELECT content, l2_distance(embedding, %s) AS distance
        FROM enterprise_knowledge
        ORDER BY distance ASC
        LIMIT 3
        """
        cursor.execute(sql, (embedding_str,))
        results=cursor.fetchall()
        content=""
        for result in results:
            content+=result[0]
        return  content
    except pymysql.Error as db_err:
        print(f"Database error: {db_err}")
        return"查询失败。"
    finally:
        cursor.close()
        conn.close()

def build_rag_prompt(query, retrieved_content):
    prompt = f"""
    [系统指令] 你是企业智能客服,基于以下知识回答用户问题:
    [知识上下文] {retrieved_content}
    [用户问题] {query}
    """
    return prompt

# 调用 DeepSeek 生成回答
def generate_answer(prompt):
    url = "http://localhost:11434/api/generate"
    payload = {"model": "deepseek-r1:7b", "prompt": prompt}

    try:
        response = requests.post(url, json=payload)
        response.raise_for_status()

        full_response = ""
        for line in response.text.splitlines():
            if line.strip():  # 过滤空行
                try:
                    json_obj = json.loads(line)
                    if"response"in json_obj:
                        full_response += json_obj["response"]  # 只提取答案
                    if json_obj.get("done", False):
                        break
                except json.JSONDecodeError as e:
                    print(f"JSON 解析错误: {e}, line: {line}")

        return clean_response(full_response.strip())  # 处理并去掉 <think>XXX</think>
    except requests.exceptions.RequestException as e:
        print(f"请求失败: {e}")
        return"生成失败。"

# 记录对话日志
def log_conversation(user_id, question, question_embedding, retrieved_content, generated_answer):
    try:
        conn = pymysql.connect(
            host='X.X.X.X',
            port=9030,
            user='root',
            password='sr123456',
            database='knowledge_base'
        )
        cursor = conn.cursor()
        embedding_str = "[" + ",".join(map(str, question_embedding)) + "]"
        sql = """
        INSERT INTO customer_service_log (user_id, question, question_embedding, retrieved_content, generated_answer, timestamp)
        VALUES (%s, %s, %s, %s, %s, NOW())
        """
        cursor.execute(sql, (user_id, question, embedding_str, retrieved_content, generated_answer))
        conn.commit()
    except pymysql.Error as db_err:
        print(f"Database error: {db_err}")
    finally:
        cursor.close()
        conn.close()

def clean_response(text):
    # 去掉所有 <think>xxx</think> 结构
    return re.sub(r"<think>.*?</think>", "", text, flags=re.DOTALL).strip()

# 主流程
def rag_pipeline(user_id, query):
    try:
        logging.info(f"开始处理查询: {query}")

        query_embedding = get_embedding(query)
        logging.info("获取嵌入向量成功")

        retrieved_content = search_knowledge_base(query_embedding)
        logging.info(f"检索到内容: {retrieved_content[:50]}...")  # 只展示前50字符

        prompt = build_rag_prompt(query, retrieved_content)
        generated_answer = generate_answer(prompt)
        logging.info(f"生成回答: {generated_answer[:50]}...")

        log_conversation(user_id, query, query_embedding, retrieved_content, generated_answer)
        logging.info("日志记录完成")

        return generated_answer
    except Exception as e:
        logging.error(f"发生错误: {e}", exc_info=True)
        return"处理失败。"

# 测试
if __name__ == '__main__':

    logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")

    user_id = "user123"
    query = "StarRocks 的愿景是什么?"
    answer = rag_pipeline(user_id, query)
    print(f"问题: {query}")
    print(f"回答: {answer}")
6.1.2 操作演示

img

总结一下 RAG 增强后的执行流程:

  • 输入:用户输入问题
  • 数据向量化:DeepSeek Embedding
  • StarRocks 向量索引,在 enterprise_knowledge 表中检索最相似的知识
  • 增强(Augmentation):将检索结果与问题组合成 Prompt,传递给 DeepSeek
  • 生成回答:调用 DeepSeek 生成增强后的回答
  • 记录日志:将问题、检索结果和生成回答存入 customer_service_log
  • 返回结果:将生成的回答返回给用户

6.2 加上 web 可视化界面

<!DOCTYPE html>
<html lang="zh">
<head>
    <meta charset="UTF-8">
    <meta name="viewport" content="width=device-width, initial-scale=1.0">
    <title>智能问答客服系统</title>
    <script>
        async functionaskQuestion() {
            let question = document.getElementById("question").value;
            let response = await fetch("/ask", {
                method: "POST",
                headers: {
                    "Content-Type": "application/json"
                },
                body: JSON.stringify({ question: question })
            });
            let data = await response.json();
            document.getElementById("answer").innerText = data.answer;
        }
    </script>
</head>
<body>
    <h1>智能问答客服系统</h1>
    <input type="text" id="question" placeholder="请输入您的问题">
    <button onclick="askQuestion()">提问</button>
    <p id="answer"></p>
</body>
</html>

6.3 完整问答后台服务代码

6.3.1 *代码结构如下*
img
6.3.2 知识存储代码
import pymysql
import requests

def get_embedding(text):
    url = "http://localhost:11434/api/embeddings"
    payload = {"model": "deepseek-r1:7b", "prompt": text}
    response = requests.post(url, json=payload)
    response.raise_for_status()
    return response.json()["embedding"]

try:
    content = "StarRocks 的愿景是能够让用户的数据分析变得更加简单和敏捷。"
    embedding = get_embedding(content)

    # 将 Python 列表转换为 StarRocks 的数组格式
    embedding_str = "[" + ",".join(map(str, embedding)) + "]"# 例如:[0.1,0.2,0.3]

    conn = pymysql.connect(
        host='X.X.X.X',
        port=9030,
        user='root',
        password='sr123456',
        database='knowledge_base'
    )
    cursor = conn.cursor()

    # 使用格式化的数组字符串
    sql = "INSERT INTO enterprise_knowledge (content, embedding) VALUES (%s, %s)"
    cursor.execute(sql, (content, embedding_str))
    conn.commit()
    print(f"Inserted: {content} with embedding {embedding[:5]}...")

except requests.RequestException as e:
    print(f"Embedding API error: {e}")
except pymysql.Error as db_err:
    print(f"Database error: {db_err}")
finally:
    if'cursor'in locals():
        cursor.close()
    if'conn'in locals():
        conn.close()
6.3.3 知识提取
import pymysql
import requests
import json
import logging
import re
from flask import Flask, request, jsonify, render_template

app = Flask(__name__)

# 配置日志
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")


# 获取嵌入向量
def get_embedding(text):
    url = "http://localhost:11434/api/embeddings"
    payload = {"model": "deepseek-r1:7b", "prompt": text, "stream": "true"}
    response = requests.post(url, json=payload)
    response.raise_for_status()
    return response.json()["embedding"]


# 从 StarRocks 检索知识
def search_knowledge_base(query_embedding):
    try:
        conn = pymysql.connect(
            host='X.X.X.X',
            port=9030,
            user='root',
            password='sr123456',
            database='knowledge_base'
        )
        cursor = conn.cursor()
        embedding_str = "[" + ",".join(map(str, query_embedding)) + "]"
        sql = """
        SELECT content, l2_distance(embedding, %s) AS distance
        FROM enterprise_knowledge
        ORDER BY distance ASC
        LIMIT 3
        """
        cursor.execute(sql, (embedding_str,))
        results=cursor.fetchall()
        content=""
        for result in results:
            content+=result[0]
        # result = cursor.fetchone()
        return  content
    except pymysql.Error as db_err:
        print(f"Database error: {db_err}")
        return"查询失败。"
    finally:
        cursor.close()
        conn.close()


# 构造 RAG Prompt
def build_rag_prompt(query, retrieved_content):
    return f"""
    [系统指令] 你是企业智能客服,基于以下知识回答用户问题:
    [知识上下文] {retrieved_content}
    [用户问题] {query}
    """


# 调用 DeepSeek 生成回答
def generate_answer(prompt):
    url = "http://localhost:11434/api/generate"
    payload = {"model": "deepseek-r1:7b", "prompt": prompt}

    try:
        response = requests.post(url, json=payload)
        response.raise_for_status()

        full_response = ""
        for line in response.text.splitlines():
            if line.strip():
                try:
                    json_obj = json.loads(line)
                    if"response"in json_obj:
                        full_response += json_obj["response"]
                    if json_obj.get("done", False):
                        break
                except json.JSONDecodeError as e:
                    logging.warning(f"JSON 解析错误: {e}, line: {line}")

        return clean_response(full_response.strip())  # 处理并去掉 <think>XXX</think>
    except requests.exceptions.RequestException as e:
        logging.error(f"请求失败: {e}")
        return"生成失败。"


# 记录对话日志
def log_conversation(user_id, question, question_embedding, retrieved_content, generated_answer):
    try:
        conn = pymysql.connect(
            host='X.X.X.X',
            port=9030,
            user='root',
            password='sr123456',
            database='knowledge_base'
        )
        cursor = conn.cursor()
        embedding_str = "[" + ",".join(map(str, question_embedding)) + "]"
        sql = """
        INSERT INTO customer_service_log (user_id, question, question_embedding, retrieved_content, generated_answer, timestamp)
        VALUES (%s, %s, %s, %s, %s, NOW())
        """
        cursor.execute(sql, (user_id, question, embedding_str, retrieved_content, generated_answer))
        conn.commit()
    except pymysql.Error as db_err:
        logging.error(f"数据库错误: {db_err}")
    finally:
        cursor.close()
        conn.close()


# 清理回答内容,去掉 <think>XXX</think>
def clean_response(text):
    return re.sub(r"<think>.*?</think>", "", text, flags=re.DOTALL).strip()


# RAG 处理流程
def rag_pipeline(user_id,query):
    try:
        logging.info(f"开始处理查询: {query}")

        query_embedding = get_embedding(query)
        logging.info("获取嵌入向量成功")

        retrieved_content = search_knowledge_base(query_embedding)
        logging.info(f"检索到内容: {retrieved_content[:50]}...")  # 只展示前50字符
        
        prompt = build_rag_prompt(query, retrieved_content)

        generated_answer = generate_answer(prompt)
        logging.info(f"生成回答: {generated_answer[:50]}...")

        log_conversation(user_id, query, query_embedding, retrieved_content, generated_answer)
        logging.info("日志记录完成")

        return generated_answer
    except Exception as e:
        logging.error(f"发生错误: {e}", exc_info=True)
        return"处理失败。"


# Flask API
@app.route("/")
def index():
    return render_template("index.html")  # 渲染前端页面

@app.route("/ask", methods=["POST"])
def ask():
    user_id="sr_01"
    data = request.json
    question = data.get("question", "")

    result=rag_pipeline(user_id,question)
    answer = f"问题:{question}。\n 回答:{result}"

    return jsonify({"answer": answer})


if __name__ == "__main__":
    user_id = "sr"
    app.run(host="0.0.0.0", port=9033, debug=True)
6.3.4 *效果演示*

img

img

参考文档:

Deepseek 搭建:https://zhuanlan.zhihu.com/p/20803691410

Vector index 资料:https://docs.starrocks.io/zh/docs/table_design/indexes/vector_index/

如何零基础入门 / 学习AI大模型?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

想正式转到一些新兴的 AI 行业,不仅需要系统的学习AI大模型。同时也要跟已有的技能结合,辅助编程提效,或上手实操应用,增加自己的职场竞争力。

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高

那么我作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,希望可以帮助到更多学习大模型的人!至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

👉 福利来袭CSDN大礼包:《2025最全AI大模型学习资源包》免费分享,安全可点 👈

全套AGI大模型学习大纲+路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

read-normal-img

640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

👉学会后的收获:👈
基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

👉 福利来袭CSDN大礼包:《2025最全AI大模型学习资源包》免费分享,安全可点 👈

img

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值