优达学城无人驾驶工程师——P3行为克隆

这篇博客介绍了如何在优达学城的P3项目中,通过模拟器进行无人驾驶的学习。首先,在训练模式下收集不同视角的图片及对应转向数据。接着,利用Keras构建神经网络模型,对这些数据进行处理,放大转向角1.5倍,并最终保存为model-L2-test.h5文件,该文件包含了无人驾驶所需的模型信息。
摘要由CSDN通过智能技术生成

这次是P3项目,就是通过模拟器,来实现无人驾驶的作用,虽然和真正的无人驾驶是两码事。

首先有一个模拟器,如下图,有一个训练模式,一个自动驾驶模式。


一开始先用训练模式,有一个保存路径,可以把训练好的图片和所对应的转向角给保存下来。分别有中间,左边,右边,三个摄像头拍摄的图片,还有对应的转向,加速,刹车,速度。



然后我们就可以利用这些信息来实现无人驾驶,通过Keras。

下面开始代码部分。

import csv
import cv2
import numpy as np
lines = []
with open('data/driving_log.csv') as f:
    reader = csv.reader(f)
    for line in reader:
        lines.append(line)

导包和读取之前保存的文件路径。

images = []
measurements = []
for line in lines:
    source_path = line[0]
    tokens = source_path.split
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值