四旋翼无人机姿态控制及坐标系转换和GPS数据解析
引言
四旋翼无人机在农业、测绘、影视拍摄等领域发挥着重要作用。其控制精度直接关系到任务的执行效果。本文主要介绍四旋翼无人机的姿态控制,坐标系转换以及GPS数据的解析。
- 四旋翼无人机姿态控制
四旋翼无人机的姿态通常用滚转角(roll)、俯仰角(pitch)和航向角(yaw)来表示。控制无人机的姿态,就是通过调整四个电机的转速,使无人机在空中达到期望的姿态。
1.1 姿态控制算法
常见的姿态控制算法有PID控制、LQR控制等。这里以PID控制为例介绍。
假设我们希望无人机达到一定的目标滚转角、目标俯仰角和目标航向角,我们可以通过PID控制器计算出四个电机应该提供的推力。
PID 控制算法原理:
- 比例控制 §:
比例控制部分对误差进行线性缩放。它是误差与控制输出之间的比例因子。公式如下:
P_out = K_p * error
这里,K_p 是比例增益,error 是目标值和实际值之间的差。
- 积分控制 (I):
积分控制用于消除系统的稳态误差。它通过累积过去的误差来工作。公式如下:
I_out = K_i * ∫(error)dt
这里,K_i 是积分增益。
- 微分控制 (D):
微分控制预测误差的变化。它对误差的变化率进行控制,以减少过冲和震荡。公式如下:
D_out = K_d * d(error)/dt
这里,K_d 是微分增益。
PID 控制器的输出是这三个部分的总和:
PID_output = P_out + I_out + D_out
import time
class PIDController:
def __init__(self, kp, ki, kd):
self.kp = kp
self.ki = ki
self.kd = kd
self.previous_error = 0
self.integral = 0
self.last_time = time.time()
def update(self, setpoint, measured_value):
current_time = time.time()
delta_time = current_time - self.last_time
error = setpoint - measured_value
# P
p_out = self.kp * error
# I
self.integral += error * delta_time
i_out = self.ki * self.integral
# D
derivative = (error - self.previous_error) / delta_time
d_out = self.kd * derivative
# Update state
self.previous_error = error
self.last_time = current_time
return p_out + i_out + d_out
# 创建 PID 控制器实例
pid = PIDController(kp=1.0, ki=0.1, kd=0.01)
# 模拟无人机姿态调整过程
setpoint = 0 # 目标姿态角 (例如: 滚转角)
current_angle = 10 # 当前姿态角
while abs(setpoint - current_angle) > 0.01:
# 使用PID控制器计算控制输出
control_output = pid.update