ORB算法特征匹配

ORB算法作为Brief的优化版,虽不具有尺度不变性,但因其高速性能,常用于视频处理。程序中采用FLANN进行基于描述符的匹配,通过线性索引实现快速匹配,相比SIFT和SURF,ORB在保持良好性能的同时,显著提升了处理速度。
摘要由CSDN通过智能技术生成

ORB算法是brief算法的改进版。ORB算法比SIFT算法效率高两个数量级。计算速度上ORB是SIFT的100倍,是SURF的10倍。综合性能是最好的。
ORB算法没有解决brief算法的不具备尺度不变性的缺点。但是因为是追求速度的算法,常常适用于视屏流的处理,可以通过跟踪或者一些启发式的策略来解决尺度不变性的问题。
在给出的程序代码中,使用了基于FLANN的描述符对象匹配。
高维数据的快速最近邻算法FLANN
程序中使用的是LinearIndexParams,该结构对应的索引进行线性的、暴力(brute-force)的搜索。
其他的还有基于kd树的索引。
KNN算法与Kd树
kd树原理比较复杂。。。。。。以后有时间再看。。。。。。。。

#include<opencv2/opencv.hpp>
#include<opencv2/highgui/highgui.hpp>
#include<opencv2/features2d/features2d.hpp>
#include<opencv2/xfeatures2d/nonfree.hpp>
#include<iostream>
using namespace std;
using namespace cv;

<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值