对偶范数(Dual Norm)

对偶范数(Dual Norm) 是在泛函分析和凸优化中非常重要的概念。它用于衡量向量和线性函数之间的关系,尤其是在优化问题和范数的几何理解中非常有用。

1. 对偶范数的定义

给定一个向量空间 V V V 和它的范数 ∥ ⋅ ∥ \|\cdot\| ,对偶范数(Dual Norm) ∥ ⋅ ∥ ∗ \|\cdot\|_∗ 是定义在 V ∗ V^* V V V V的对偶空间)上的范数,用于度量对偶空间中的元素的大小。对偶空间包含作用在原始空间 V V V 上的所有线性函数。

对偶范数的定义是:

∥ y ∥ ∗ = sup ⁡ { y T x : ∥ x ∥ ≤ 1 } \|y\|_* = \sup \{ y^T x : \|x\| \leq 1 \} y=sup{ yTx:x1}

或者更一般地表示为:

∥ y ∥ ∗ = sup ⁡ { ⟨ y , x ⟩ : ∥ x ∥ ≤ 1 } \|y\|_* = \sup \{ \langle y, x \rangle : \|x\| \leq 1 \} y=sup{⟨y,x:x1}

其中 ⟨ y , x ⟩ \langle y, x \rangle

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

xy_optics

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值