对偶范数(Dual Norm) 是在泛函分析和凸优化中非常重要的概念。它用于衡量向量和线性函数之间的关系,尤其是在优化问题和范数的几何理解中非常有用。
1. 对偶范数的定义
给定一个向量空间 V V V 和它的范数 ∥ ⋅ ∥ \|\cdot\| ∥⋅∥,对偶范数(Dual Norm) ∥ ⋅ ∥ ∗ \|\cdot\|_∗ ∥⋅∥∗ 是定义在 V ∗ V^* V∗( V V V的对偶空间)上的范数,用于度量对偶空间中的元素的大小。对偶空间包含作用在原始空间 V V V 上的所有线性函数。
对偶范数的定义是:
∥ y ∥ ∗ = sup { y T x : ∥ x ∥ ≤ 1 } \|y\|_* = \sup \{ y^T x : \|x\| \leq 1 \} ∥y∥∗=sup{ yTx:∥x∥≤1}
或者更一般地表示为:
∥ y ∥ ∗ = sup { ⟨ y , x ⟩ : ∥ x ∥ ≤ 1 } \|y\|_* = \sup \{ \langle y, x \rangle : \|x\| \leq 1 \} ∥y∥∗=sup{⟨y,x⟩:∥x∥≤1}
其中 ⟨ y , x ⟩ \langle y, x \rangle