深度学习笔记整理(二)——神经网络

本文介绍了神经网络的历史,包括M-P模型、感知器模型、多层感知器模型以及误差反向传播算法。详细讲解了不同类型的神经网络,如RBF、ART、SOM网络,并探讨了梯度消失问题和各种学习算法。
摘要由CSDN通过智能技术生成

1.神经网络的历史

第一阶段(1940-1970)

  • 1943年,形式神经元模型的产生(M-P模型);
  • 1958年,感知器的提出(经过训练确定神经元的连接权重);
  • 1969年,提出感知器无法解决线性不可分问题。

第二阶段(1980-1990)

  • 1980年,神经认知机的提出;
  • 1982年,Hopfield模型的提出;
  • 1986年,误差反向传播算法的提出(利用多层感知器解决线性不可分问题);
  • 1989年,卷积神经网络的提出。

2.M-P模型

假设有三个参数,相应的M-P模型如下:

  • y=f(\sum_{i=1}^{n}w_{i}x_{i}-h)
  • 其中w_{1}w_{2}w_{3}为参数,参数需要人为事先计算后决定;

3.感知器模型

  • 与M-P模型相比,感知器模型通过训练自动确定参数
  • 感知器模型是有监督学习模型,通过误差修正学习方法迭代求解。
  • y=f(\sum_{i=1}^{n}w_{i}x_{i}-h)
  • 误差修正学习策略如下:
  1. w_{i}=w_{i}+\alpha (r-y)x_{i},\, \, h=h-\alpha (r-y)  其中r是得到的实际值,y是期望值;
  2. 当y=0,r=1时:增大x_{i}=1的连接权重w_{i},即增大w_{i}x_{i}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值