坐标系转换--布尔莎模型变换关系理解

布尔莎模型变换关系理解

[ X 2 Y 2 Z 2 ] = [ X 1 Y 1 Z 1 ] + [ T x T y T z ] + [ D R z − R y − R z D R x R y − R x D ] [ X 1 Y 1 Z 1 ] (1) \tag{1} \begin{bmatrix} X_2 \\ Y_2 \\ Z_2 \end{bmatrix} = \begin{bmatrix} X_1 \\ Y_1 \\ Z_1 \end{bmatrix} + \begin{bmatrix} T_x \\ T_y \\ T_z \end{bmatrix} + \begin{bmatrix} D & R_z & -R_y \\ -R_z & D & R_x \\ R_y & -R_x & D \end{bmatrix} \begin{bmatrix} X_1 \\ Y_1 \\ Z_1 \end{bmatrix} X2Y2Z2 = X1Y1Z1 + TxTyTz + DRzRyRzDRxRyRxD X1Y1Z1 (1)

式中 : 式中: 式中:
X 1 , Y 1 , Z 1 − − − − 原坐标系坐标,单位 : m e t e r (参考 p r o j ); X_1,Y_1,Z_1 ----原坐标系坐标,单位:meter(参考proj); X1Y1Z1原坐标系坐标,单位:meter(参考proj);
X 2 , Y 2 , Z 2 − − − − 新坐标系坐标,单位 : m e t e r (参考 p r o j ); X_2,Y_2,Z_2 ----新坐标系坐标,单位:meter(参考proj); X2Y2Z2新坐标系坐标,单位:meter(参考proj);
T x , T y , T z , R x , R y , R z , D − − − − 7 个转换参数: 3 个平移参数【单位 : m e t e r (参考 p r o j )】、 3 个旋转参数【计算单位 : r a d i a n ,展示单位: a r c s e c o n d s (参考超图),但是在 p r o j 中计算和展示都是 a r c s e c o n d s (参考 p r o j )】、 1 个尺度参数【单位 : p p m (参考 p r o j )】; T_x,T_y,T_z,R_x,R_y,R_z,D ----7个转换参数:3个平移参数【单位:meter(参考proj)】、3个旋转参数【计算单位: radian,展示单位:arc seconds(参考超图),但是在proj中计算和展示都是 arc seconds(参考proj)】、1个尺度参数【单位:ppm(参考proj)】; TxTyTzRxRyRzD7个转换参数:3个平移参数【单位:meter(参考proj)】、3个旋转参数【计算单位:radian,展示单位:arcseconds(参考超图),但是在proj中计算和展示都是arcseconds(参考proj)】、1个尺度参数【单位:ppm(参考proj)】;

各个单位换算关系

Arc Second:角度测量单位(参考MathWorld
1 Arc Second = 1/60 of an arc minute = 1/3600 of a degree

ppm指的是"parts per million",即每百万单位中的部分数(参考RapidTable
1ppm = 0.0001% = 1/1000000

进一步换算:
[ X 2 Y 2 Z 2 ] = [ X 1 Y 1 Z 1 ] + [ T x + D X 1 + R z Y 1 − R y Z 1 T y − R z X 1 + D Y 1 + R x Z 1 T z + R y X 1 − R x Y 1 + D Z 1 ] (2) \tag{2} \begin{bmatrix} X_2 \\ Y_2 \\ Z_2 \end{bmatrix} = \begin{bmatrix} X_1 \\ Y_1 \\ Z_1 \end{bmatrix} + \begin{bmatrix} T_x + DX_1 + R_zY_1 - R_yZ_1 \\ T_y - R_zX_1 + DY_1 + R_xZ_1 \\ T_z + R_yX_1 - R_xY_1 + DZ_1 \end{bmatrix} X2Y2Z2 = X1Y1Z1 + Tx+DX1+RzY1RyZ1TyRzX1+DY1+RxZ1Tz+RyX1RxY1+DZ1 (2)

又 ∵ 又\because
[ T x + D X 1 + R z Y 1 − R y Z 1 T y − R z X 1 + D Y 1 + R x Z 1 T z + R y X 1 − R x Y 1 + D Z 1 ] = P [ T x T y T z R x R y R z D ] = [ P 1 P 2 P 3 P 4 P 5 P 6 P 7 P 8 P 9 P 10 P 11 P 12 P 13 P 14 P 15 P 16 P 17 P 18 P 19 P 20 P 21 ] [ T x T y T z R x R y R z D ] \begin{bmatrix} T_x + DX_1 + R_zY_1 - R_yZ_1 \\ T_y - R_zX_1 + DY_1 + R_xZ_1 \\ T_z + R_yX_1 - R_xY_1 + DZ_1 \end{bmatrix} =P\begin{bmatrix} T_x \\ T_y \\ T_z \\ R_x \\ R_y \\ R_z \\ D \end{bmatrix} = \begin{bmatrix} P_1 & P_2 & P_3 & P_4 & P_5 & P_6 & P_7 \\ P_8 & P_9 & P_{10} & P_{11} & P_{12} & P_{13} & P_{14} \\ P_{15} & P_{16} & P_{17} & P_{18} & P_{19} & P_{20} & P_{21} \end{bmatrix} \begin{bmatrix} T_x \\ T_y \\ T_z \\ R_x \\ R_y \\ R_z \\ D \end{bmatrix} Tx+DX1+RzY1RyZ1TyRzX1+DY1+RxZ1Tz+RyX1RxY1+DZ1 =P TxTyTzRxRyRzD = P1P8P15P2P9P16P3P10P17P4P11P18P5P12P19P6P13P20P7P14P21 TxTyTzRxRyRzD

⇒ [ T x + D X 1 + R z Y 1 − R y Z 1 T y − R z X 1 + D Y 1 + R x Z 1 T z + R y X 1 − R x Y 1 + D Z 1 ] = [ P 1 T x + P 2 T y + P 3 T z + P 4 R x + P 5 R y + P 6 R z + P 7 D P 8 T x + P 9 T y + P 10 T z + P 11 R x + P 12 R y + P 13 R z + P 14 D P 15 T x + P 16 T y + P 17 T z + P 18 R x + P 19 R y + P 20 R z + P 21 D ] \Rarr \begin{bmatrix} T_x + DX_1 + R_zY_1 - R_yZ_1 \\ T_y - R_zX_1 + DY_1 + R_xZ_1 \\ T_z + R_yX_1 - R_xY_1 + DZ_1 \end{bmatrix} = \begin{bmatrix} P_1T_x + P_2T_y + P_3T_z + P_4R_x + P_5R_y + P_6R_z + P_7D \\ P_8T_x + P_9T_y + P_{10}T_z + P_{11}R_x + P_{12}R_y + P_{13}R_z + P_{14}D \\ P_{15}T_x + P_{16}T_y + P_{17}T_z + P_{18}R_x + P_{19}R_y + P_{20}R_z + P_{21}D \end{bmatrix} Tx+DX1+RzY1RyZ1TyRzX1+DY1+RxZ1Tz+RyX1RxY1+DZ1 = P1Tx+P2Ty+P3Tz+P4Rx+P5Ry+P6Rz+P7DP8Tx+P9Ty+P10Tz+P11Rx+P12Ry+P13Rz+P14DP15Tx+P16Ty+P17Tz+P18Rx+P19Ry+P20Rz+P21D

⇒ P 1 = 1 , P 2 = 0 , P 3 = 0 , P 4 = 0 , P 5 = − Z 1 , P 6 = Y 1 , P 7 = X 1 P 8 = 0 , P 9 = 1 , P 10 = 0 , P 11 = Z 1 , P 12 = 0 , P 13 = − X 1 , P 14 = Y 1 P 15 = 0 , P 16 = 0 , P 17 = 1 , P 18 = − Y 1 , P 19 = X 1 , P 20 = 0 , P 21 = Z 1 \Rarr \\ P_1=1, P_2=0, P_3=0, P_4=0, P_5=-Z_1, P_6=Y_1, P_7=X_1 \\ P_8=0, P_9=1, P_{10}=0,P_{11}=Z_1, P_{12}=0, P_{13}=-X_1,P_{14}=Y_1 \\ P_{15}=0,P_{16}=0,P_{17}=1,P_{18}=-Y_1,P_{19}=X_1,P_{20}=0, P_{21}=Z_1 P1=1P2=0P3=0P4=0P5=Z1P6=Y1P7=X1P8=0P9=1P10=0P11=Z1P12=0P13=X1P14=Y1P15=0P16=0P17=1P18=Y1P19=X1P20=0P21=Z1

⇒ P = [ 1 0 0 0 − Z 1 Y 1 X 1 0 1 0 Z 1 0 − X 1 Y 1 0 0 1 − Y 1 X 1 0 Z 1 ] \Rarr P= \begin{bmatrix} 1 & 0 & 0 & 0 & -Z_1 & Y_1 & X_1 \\ 0 & 1 & 0 & Z_1 & 0 & -X_1 & Y_1 \\ 0 & 0 & 1 & -Y_1 & X_1 & 0 & Z_1 \end{bmatrix} P= 1000100010Z1Y1Z10X1Y1X10X1Y1Z1

∴ ( 2 ) 式变换为: \therefore (2)式变换为: (2)式变换为:
[ X 2 Y 2 Z 2 ] = [ X 1 Y 1 Z 1 ] + [ 1 0 0 0 − Z 1 Y 1 X 1 0 1 0 Z 1 0 − X 1 Y 1 0 0 1 − Y 1 X 1 0 Z 1 ] [ T x T y T z R x R y R z D ] (3) \tag{3} \begin{bmatrix} X_2 \\ Y_2 \\ Z_2 \end{bmatrix} = \begin{bmatrix} X_1 \\ Y_1 \\ Z_1 \end{bmatrix} + \begin{bmatrix} 1 & 0 & 0 & 0 & -Z_1 & Y_1 & X_1 \\ 0 & 1 & 0 & Z_1 & 0 & -X_1 & Y_1 \\ 0 & 0 & 1 & -Y_1 & X_1 & 0 & Z_1 \end{bmatrix} \begin{bmatrix} T_x \\ T_y \\ T_z \\ R_x \\ R_y \\ R_z \\ D \end{bmatrix} X2Y2Z2 = X1Y1Z1 + 1000100010Z1Y1Z10X1Y1X10X1Y1Z1 TxTyTzRxRyRzD (3)

基于最小二乘与多对同名点对计算参数

设存在 n 对同名点对: ( X a , Y a , Z a ) 1 → ( X b , Y b , Z b ) 1 , ⋯ , ( X a , Y a , Z a ) n → ( X b , Y b , Z b ) n . 设存在n对同名点对:(X_a,Y_a,Z_a)_1 \rarr (X_b,Y_b,Z_b)_1,\cdots,(X_a,Y_a,Z_a)_n \rarr (X_b,Y_b,Z_b)_n. 设存在n对同名点对:(Xa,Ya,Za)1(Xb,Yb,Zb)1(Xa,Ya,Za)n(Xb,Yb,Zb)n.
令 令
θ = [ T x T y T z R x R y R z D ] \theta =\begin{bmatrix} T_x \\ T_y \\ T_z \\ R_x \\ R_y \\ R_z \\ D \end{bmatrix} θ= TxTyTzRxRyRzD
v i = ( X b − X a , Y b − Y a , Z b − Z a ) i T , v_i=(X_b - X_a,Y_b - Y_a,Z_b - Z_a)^T_i, vi=(XbXa,YbYa,ZbZa)iT
P i = [ 1 0 0 0 − Z a Y a X a 0 1 0 Z a 0 − X a Y a 0 0 1 − Y a X a 0 Z a ] i , P_i= \begin{bmatrix} 1 & 0 & 0 & 0 & -Z_a & Y_a & X_a \\ 0 & 1 & 0 & Z_a & 0 & -X_a & Y_a \\ 0 & 0 & 1 & -Y_a & X_a & 0 & Z_a \end{bmatrix}_i, Pi= 1000100010ZaYaZa0XaYaXa0XaYaZa i
i = 1 , ⋯   , n i=1,\cdots,n i=1,,n

根据式 ( 3 ) ,代入样本值得到方程组如下: 根据式(3),代入样本值得到方程组如下: 根据式(3),代入样本值得到方程组如下:
{ P 1 θ = v 1 P 2 θ = v 2 ⋮ P n θ = v n \begin{dcases} P_1\theta = v_1 \\ P_2\theta = v_2 \\ \vdots \\ P_n\theta = v_n \end{dcases} P1θ=v1P2θ=v2Pnθ=vn
则变换为矩阵方程为: 则变换为矩阵方程为: 则变换为矩阵方程为:
v = P θ v = P\theta v=
P = [ P 1 P 2 ⋮ P n ] , v = [ v 1 v 2 ⋮ v n ] P= \begin{bmatrix} P_1 \\ P_2 \\ \vdots \\ P_n \end{bmatrix}, v= \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} P= P1P2Pn v= v1v2vn

考虑 v = P θ 无解,需要从 P 的列空间中找出最接近 v 的向量 u ( u 可以理解为 v 在 P 的列空间中的投影,理解如下图所示:) 考虑v = P\theta无解,需要从P的列空间中找出最接近v的向量u(u可以理解为v在P的列空间中的投影,理解如下图所示:) 考虑v=无解,需要从P的列空间中找出最接近v的向量uu可以理解为vP的列空间中的投影,理解如下图所示:)
在这里插入图片描述

如上图所示, p 是 b 在 [ a 1 a 2 ] 列空间中的投影。 如上图所示,p是b在\begin{bmatrix} a_1 & a_2 \end{bmatrix} 列空间中的投影。 如上图所示,pb[a1a2]列空间中的投影。
令 e = v − u ,最小二乘就是找到 ∥ e ∥ 2 最小的点,最小二乘就是指向量长度的最小平方。 令e=v-u,最小二乘就是找到\parallel e \parallel^2最小的点,最小二乘就是指向量长度的最小平方。 e=vu,最小二乘就是找到e2最小的点,最小二乘就是指向量长度的最小平方。

由上可知, u 位于 P 的列空间中,即 u 是 P 的各列的线性组合: 由上可知,u位于P的列空间中,即u是P的各列的线性组合: 由上可知,u位于P的列空间中,即uP的各列的线性组合:
令 P 的列空间为 P = [ C 1 C 2 ⋯ C m ] 令P的列空间为 P= \begin{bmatrix} C_1 & C_2 & \cdots & C_m \end{bmatrix} P的列空间为P=[C1C2Cm]
故存在 u = C 1 θ 1 ~ + C 2 θ 2 ~ + ⋯ + C m θ m ~ 故存在 u=C_1\tilde{\theta_1} + C_2\tilde{\theta_2} + \cdots + C_m\tilde{\theta_m} 故存在u=C1θ1~+C2θ2~++Cmθm~
即 P θ ~ = u 有解。 即P\tilde{\theta}=u有解。 Pθ~=u有解。

e = v − u = v − P θ ~ e=v-u=v-P\tilde{\theta} e=vu=vPθ~
e 正交于 P 的列空间,存在: e正交于P的列空间,存在: e正交于P的列空间,存在:
e ⊥ C 1 , e ⊥ C 2 , ⋯   , e ⊥ C m e \perp C_1,e \perp C_2,\cdots,e \perp C_m eC1,eC2,,eCm

由向量点积关系式可得: 由向量点积关系式可得: 由向量点积关系式可得:

⇒ { C 1 T ( v − P θ ~ ) = 0 C 2 T ( v − P θ ~ ) = 0 ⋮ C m T ( v − P θ ~ ) = 0 \Rarr \begin{dcases} C_1^T(v-P\tilde{\theta})=0 \\ C_2^T(v-P\tilde{\theta})=0 \\ \vdots \\ C_m^T(v-P\tilde{\theta})=0 \end{dcases} C1T(vPθ~)=0C2T(vPθ~)=0CmT(vPθ~)=0

⇒ [ C 1 T C 2 T C 3 T ⋮ C m T ] ( v − P θ ~ ) = [ 0 0 0 ⋮ 0 ] \Rarr \begin{bmatrix} C_1^T \\ C_2^T \\ C_3^T \\ \vdots \\ C_m^T \end{bmatrix} (v-P\tilde{\theta})= \begin{bmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix} C1TC2TC3TCmT (vPθ~)= 0000

∵ P = [ C 1 C 2 ⋯ C m ] \because P= \begin{bmatrix} C_1 & C_2 & \cdots & C_m \end{bmatrix} P=[C1C2Cm]
∴ P T = [ C 1 T C 2 T ⋮ C m T ] \therefore P^T = \begin{bmatrix} C_1^T \\ C_2^T \\ \vdots \\ C_m^T \end{bmatrix} PT= C1TC2TCmT

⇒ P T ( v − P θ ~ ) = 0 \Rarr P^T(v-P\tilde{\theta})=0 PT(vPθ~)=0
⇒ P T P θ ~ = P T v \Rarr P^TP\tilde{\theta}=P^Tv PTPθ~=PTv
⇒ θ ~ = ( P T P ) − 1 P T v \Rarr \tilde{\theta}=(P^TP)^{-1}P^Tv θ~=(PTP)1PTv

即 θ ~ = ( P T P ) − 1 P T v 为基于最小二乘计算出来的最接近实际参数的转换值 即\tilde{\theta}=(P^TP)^{-1}P^Tv为基于最小二乘计算出来的最接近实际参数的转换值 θ~=(PTP)1PTv为基于最小二乘计算出来的最接近实际参数的转换值

  • 1
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值