根据提供的引用内容,可以了解到Multi-label focal dice loss是多标签分类问题中的一种损失函数,结合了focal loss和dice loss的特点。下面是Multi-label focal dice loss的实现代码:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class MultiLabelFocalDiceLoss(nn.Module):
def __init__(self, gamma=2, alpha=None, size_average=True):
super(MultiLabelFocalDiceLoss, self).__init__()
self.gamma = gamma
self.alpha = alpha
if isinstance(alpha, (float, int)): self.alpha = torch.Tensor([alpha, 1 - alpha])
if isinstance(alpha, list): self.alpha = torch.Tensor(alpha)
self.size_average = size_average
def forward(self, input, target):
if input.dim() > 2:
input = input.view(input.size(0), input.size(1), -1) # N,C,H,W => N,C,H*W
input = input.transpose(1, 2) # N,C,H*W => N,H*W,C
input = input.contiguous().view(-1, input.size(2)) # N,H*W,C => N*H*W,C
if target.dim() == 4:
target = target.view(target.size(0), target.size(1), -1) # N,C,H,W => N,C,H*W
target = target.transpose(1, 2) # N,C,H*W => N,H*W,C
target = target.contiguous().view(-1, target.size(2)) # N,H*W,C => N*H*W,C
elif target.dim() == 3:
target = target.view(-1, 1)
else:
target = target.view(-1)
target = target.float()
# focal loss
logpt = F.log_softmax(input, dim=1)
logpt = logpt.gather(1, target.long().view(-1, 1))
logpt = logpt.view(-1)
pt = logpt.exp()
if self.alpha is not None:
if self.alpha.type() != input.data.type():
self.alpha = self.alpha.type_as(input.data)
at = self.alpha.gather(0, target.long().data.view(-1))
logpt = logpt * at
loss = -1 * (1 - pt) ** self.gamma * logpt
# dice loss
smooth = 1
input_soft = F.softmax(input, dim=1)
iflat = input_soft.view(-1)
tflat = target.view(-1)
intersection = (iflat * tflat).sum()
A_sum = torch.sum(iflat * iflat)
B_sum = torch.sum(tflat * tflat)
dice = (2. * intersection + smooth) / (A_sum + B_sum + smooth)
loss += (1 - dice)
if self.size_average:
return loss.mean()
else:
return loss.sum()
```
其中,focal loss和dice loss的实现都在forward函数中。在这个函数中,首先将输入和目标数据进行处理,然后计算focal loss和dice loss,并将它们相加作为最终的损失函数。需要注意的是,这里的输入和目标数据都是经过处理的,具体处理方式可以参考代码中的注释。