Dice-loss

使用深度学习做医学图像分割时,经常会用dice系数作为损失函数。

loss function之用Dice-coefficient loss function or cross-entropy
https://blog.csdn.net/u014264373/article/details/82950922

dice系数作为损失函数的网络模型如何加载(ValueError: Unknown loss function:dice_coef_loss)
https://blog.csdn.net/weixin_41783077/article/details/83789743

pytorch: DiceLoss MulticlassDiceLoss
https://blog.csdn.net/a362682954/article/details/81226427

使用U-Net分割方法进行癌症诊断(教程翻译)(用到了Dice)
https://blog.csdn.net/qq_30911665/article/details/74356112

根据提供的引用内容,可以了解到Multi-label focal dice loss是多标签分类问题中的一种损失函数,结合了focal lossdice loss的特点。下面是Multi-label focal dice loss的实现代码: ```python import torch import torch.nn as nn import torch.nn.functional as F class MultiLabelFocalDiceLoss(nn.Module): def __init__(self, gamma=2, alpha=None, size_average=True): super(MultiLabelFocalDiceLoss, self).__init__() self.gamma = gamma self.alpha = alpha if isinstance(alpha, (float, int)): self.alpha = torch.Tensor([alpha, 1 - alpha]) if isinstance(alpha, list): self.alpha = torch.Tensor(alpha) self.size_average = size_average def forward(self, input, target): if input.dim() > 2: input = input.view(input.size(0), input.size(1), -1) # N,C,H,W => N,C,H*W input = input.transpose(1, 2) # N,C,H*W => N,H*W,C input = input.contiguous().view(-1, input.size(2)) # N,H*W,C => N*H*W,C if target.dim() == 4: target = target.view(target.size(0), target.size(1), -1) # N,C,H,W => N,C,H*W target = target.transpose(1, 2) # N,C,H*W => N,H*W,C target = target.contiguous().view(-1, target.size(2)) # N,H*W,C => N*H*W,C elif target.dim() == 3: target = target.view(-1, 1) else: target = target.view(-1) target = target.float() # focal loss logpt = F.log_softmax(input, dim=1) logpt = logpt.gather(1, target.long().view(-1, 1)) logpt = logpt.view(-1) pt = logpt.exp() if self.alpha is not None: if self.alpha.type() != input.data.type(): self.alpha = self.alpha.type_as(input.data) at = self.alpha.gather(0, target.long().data.view(-1)) logpt = logpt * at loss = -1 * (1 - pt) ** self.gamma * logpt # dice loss smooth = 1 input_soft = F.softmax(input, dim=1) iflat = input_soft.view(-1) tflat = target.view(-1) intersection = (iflat * tflat).sum() A_sum = torch.sum(iflat * iflat) B_sum = torch.sum(tflat * tflat) dice = (2. * intersection + smooth) / (A_sum + B_sum + smooth) loss += (1 - dice) if self.size_average: return loss.mean() else: return loss.sum() ``` 其中,focal lossdice loss的实现都在forward函数中。在这个函数中,首先将输入和目标数据进行处理,然后计算focal lossdice loss,并将它们相加作为最终的损失函数。需要注意的是,这里的输入和目标数据都是经过处理的,具体处理方式可以参考代码中的注释。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值