机器学习2 分类与逻辑回归

​ 分类问题和线性回归问题很像,只是在分类问题中我们预测的 y y 值包含在一个小的离散数据集里。首先,认识一下二元分类(binary classification),在二元分类中,y 的取值只能是 0 和 1。例如,我们要做一个垃圾邮件分类器,则 x(i) x ( i ) 为邮件的特征,而对于 y y ,当它为1,则为垃圾邮件,为0 则表示邮件为正常邮件。所以 0 称之为负类(negative class),1为正类(positive class) 。

逻辑回归

​ 我们知道线性回归问题只能预测连续的值,而分类问题,往往是分成几个类,或者是某一类(y=1),不是某一类( y=0 y = 0 )。对于后者,若已知 y{0,1} y ∈ { 0 , 1 } ,则 hθ(x) h θ ( x ) 大于1,或者小于0都是没有意义的。To fix this,我们选择:

hθ(x)=g(θTx)=11+eθTx h θ ( x ) = g ( θ T x ) = 1 1 + e θ T x

g(z)=11+ez g ( z ) = 1 1 + e z

g(z) g ( z ) 是逻辑函数,或者叫==sigmoid函数== ,如下图所示。

这里写图片描述

​ 虽然其他平滑函数,只要能使 hθ(x) h θ ( x ) 的值限制到 [0,1] 也是可以的,其实选择sigmoid函数是很自然的,具体将在 讲GLM 算法的时候讲。

g(z) g ( z ) 的导数有个很重要的属性:

g(z)====ddz11+ezez(1+ez)211+ez1(1+ez)2g(z)[1g(z)](119)(120)(121)(122) (119) g ( z ) ′ = d d z 1 1 + e z (120) = e − z ( 1 + e − z ) 2 (121) = 1 1 + e − z − 1 ( 1 + e − z ) 2 (122) = g ( z ) [ 1 − g ( z ) ]

​ 那么,给定逻辑回归模型,我们如何拟合出合适的 θ θ ? 根据由最大似然估计得到 LSR,我们赋予分类模型一组概率假设,然后通过最大似然函数得到合适的参数。
p(y=1|x;θ)p(y=0|x;θ)==hθ(x)1hθ(x)(123)(124) (123) p ( y = 1 | x ; θ ) = h θ ( x ) (124) p ( y = 0 | x ; θ ) = 1 − h θ ( x )

​ 合并起来可以写成下面的形式:
p(y|x;θ)=(hθ(x))y(1hθ(x))1y p ( y | x ; θ ) = ( h θ ( x ) ) y ( 1 − h θ ( x ) ) 1 − y

​ 假设 m m 个训练样本是独立的,则参数的似然函数如下:
(125)L(θ)=p(y|X;θ)(126)=i=1mp(y(i)|x(i);θ)(127)=i=1m(hθ(x(i)))y(i)(1hθ(x(i)))1y(i)

(θ)==lnL(θ)i=1m[y(i)lnhθ(x(i))+(1y(i))ln(1hθ(x(i)))](31)(32) (31) ℓ ( θ ) = l n L ( θ ) (32) = ∑ i = 1 m [ y ( i ) l n h θ ( x ( i ) ) + ( 1 − y ( i ) ) l n ( 1 − h θ ( x ( i ) ) ) ]

​ 最大化似然函数的方法有两种。一种和线性回的推导相似,梯度上升的方法;另一种是牛顿法。

(1)梯度上升法

​ 用向量来表示的话 ,我们可以用下式来更新参数:

θ:=θ+αθ(θ) θ := θ + α ∇ θ ℓ ( θ )

​ 需要注意的是,这里是 + 不是 - ,因为是最大化似然函数。下面先假设只有一个训练样本 (x,y) ( x , y ) ,使用随机梯度上升规则。
(θ)θj=====θj[ylnhθ(x)+(1y)ln(1hθ(x))][y1hθ(x)(1y)11hθ(x)]hθ(x)θj[y1g(θTx)(1y)11g(θTx)]g(θTx)(1g(θTx))θTxθj(y(1g(θTx))(1y)g(θTx))xj(yhθ(x))xj(33)(34)(35)(36)(37) (33) ∂ ℓ ( θ ) ∂ θ j = ∂ ∂ θ j [ y l n h θ ( x ) + ( 1 − y ) l n ( 1 − h θ ( x ) ) ] (34) = [ y 1 h θ ( x ) − ( 1 − y ) 1 1 − h θ ( x ) ] ∂ h θ ( x ) ∂ θ j (35) = [ y 1 g ( θ T x ) − ( 1 − y ) 1 1 − g ( θ T x ) ] g ( θ T x ) ( 1 − g ( θ T x ) ) ∂ θ T x ∂ θ j (36) = ( y ( 1 − g ( θ T x ) ) − ( 1 − y ) g ( θ T x ) ) x j (37) = ( y − h θ ( x ) ) x j

θ:=θ+α(yhθ(x))xj ⇒ θ := θ + α ( y − h θ ( x ) ) x j

​ 如果我们将其与LMS更新规则进行比较,我们会发现它看起来差不多; 但这不是相同的算法,因为 hθ(x(i)) h θ ( x ( i ) ) 现在被定义为 θTx(i) θ T x ( i ) 的非线性函数。 尽管如此,我们最终得到了相同的更新规则以获得相当不同的算法和学习问题。这是巧合吗,具体原因请移步GLM Model

(1 12 1 2 )插叙:感知学习算法

​ 我们现在离题谈论一个具有一定历史意义的算法, 考虑修改逻辑回归的方法以“强制”它输出0或1或精确值。 要做到这一点,将 g g 的定义更改为阈值函数似乎很自然:

g(z)={1(ifz0)0(ifz<0)

​ 同样,令 hθ(x)=g(θTx) h θ ( x ) = g ( θ T x ) g g 的定义如上式(22),同样用更新规则:

θ:=θ+α(yhθ(x))xj ,这样便得到了==感知学习算法== (perceptron learning algorithm)

​ 在20世纪60年代,这种“感知机”被认为是解释大脑中各个神经元如何工作的粗略模型。尽管感知器可能在美学上与我们所讨论的其他算法相似,但它实际上是一种非常不同类型的算法,而不是逻辑回归和LSR。

(2)牛顿法

​ 回到逻辑回归,另一种最大化似然函数的方法是==牛顿法== (Newton’s method)。

​ 牛顿法的核心思想是找 0。假设有函数 f:RR f : R ↦ R . 我们要找到一个 θ θ 使得 f(θ)=0 f ( θ ) = 0 成立, θR θ ∈ R ,是一个实数。此时牛顿法的更新规则如下:

θ:=θf(θ)f(θ) θ := θ − f ( θ ) f ′ ( θ )

​ 这种方法有一个自然的解释,我们可以把它看作是通过线性函数逼近函数 f f ,线性函数在当前猜测 θ 处与 f f 相切,求解线性函数等于零的位置,并让 θ 的下一个猜测 θ θ 成为线性函数为零的地方。下面是牛顿法的图解:

这里写图片描述

​ 牛顿方法给出了一种获得 f(θ)=0 f ( θ ) = 0 的方法。如果我们想用它来最大化函数 该怎么办呢?函数 的最大值对应其一阶导数 ℓ ′ 为零的点。 因此,可以令

f(θ)=(θ) f ( θ ) = ℓ ′ ( θ ) 。我们同样用更新规则的方式最大化

θ:=θ(θ)′′(θ) θ := θ − ℓ ′ ( θ ) ℓ ″ ( θ )

​ 最后,在我们的逻辑回归数据中, θ θ 是向量,因此我们需要将牛顿方法推广到这些数据上。 牛顿法对这种多维数据的推广(称为==Newton-Raphson法==)由下式给出:
θ:=θH1θ(θ) θ := θ − H − 1 ∇ θ ℓ ( θ )

H H n×n 的矩阵(实际上,如果加上截距项,则大小为 (n+1)×(n+1) ( n + 1 ) × ( n + 1 ) )。 H H called ==Hessian== , 它的项的形式如下:
Hij=2(θ)θiθj

​ 牛顿法通常比 (batch) gradient descent更快收敛,并且需要更少的迭代次数就能达到非常接近最小值。 然而,牛顿法的一次迭代可能比一次梯度下降迭代代价更昂贵,因为它需要找到一个 n×n n × n 的Hessian矩阵,并求逆。但只要 n n 不是太大,整体通常要快得多。牛顿方法用于最大化逻辑回归对数似然函数 (θ)时,称为Fisher scoring 。

分类和逻辑回归(Classification and logistic regression)
斯坦福机器学习课程Lecture 1(cs229-notes1)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值