设给定三个整数a,b,c,试写出寻找其“中”数的一个算法(用C/C++描述),并分析在平均情况与最坏情况下,算法分别要进行多少次比较?
分析:
由于A,B,C中每一个为中数的概率均为⅓;
当A为中数时,需要比较2次。
当B或C为中数时,则需要比较3次;
由此可知,平均情况下需要比较的次数为:2⅓+3⅓+3*⅓=8/3次,最坏的情况下则需要比较3次。
代码如下:
#include <iostream>
#inlcude "stdlib.h"
using namespace std;
int mid(int a,int b,int c)
{
int m;
m = a; //先假设中数为m
if (m >= b)
{
if (m >= c)
{
if (b >= c) m = b; //中数为b
else m = c; //中数为c
}
}
else
{
if(m<=c)
{
if (b >= c) m = c; //中数为c
else m = b; //中数为b
}
}
return (m);
}
int main()
{
int a, b, c;
cout << "please input a,b,c=\t";
cin >> a >> b >> c;
cout << "所求的中数为:" << mid(a, b,c) << endl;
system("pause");
return 0;
}