numpy——.npy和.npz文件

这篇博客介绍了Numpy库中用于存储和读取数组数据的函数np.save()和np.load(),重点讨论了.npy和.npz文件格式。.npy文件用于保存单个数组,以原始二进制格式存储,不适合直接文本查看。而.npz文件则可以存储多个数组,并以压缩格式保存,通过关键字参数或自动命名的arr_0、arr_1等来访问数组。在读取.npz文件时,返回的对象类似字典,方便按数组名访问数据。
摘要由CSDN通过智能技术生成

npy文件——Numpy专用的二进制格式


  1. np.load()和np.save()是读写磁盘数组数据的两个重要函数。使用时,数组会以未压缩的原始二进制格式保存在扩展名为.npy的文件中。
    import numpy as np
    
    # 将数组以二进制格式保存到磁盘
    arr=np.arange(5)
    np.save('test',arr)
    # 读取数组
    print(np.load('test.npy'))
    保存为.npy文件后如果使用记事本等工具打开浏览会出现乱码,所以如果想在保存后能够浏览内容的话建议不要使用.npy文件
  2. npz文件——压缩文件
    使用np.savez()函数可以将多个数组保存到同一个文件中。
    np.savez()函数的第一个参数是文件名,其后的参数都是需要保存的数组。传递数组时可以使用关键字参数为数组命名,非关键字参数传递的数组会自动起名为arr_0、arr_1……
    np.savez()函数输出的是一个扩展名为.npz的压缩文件,它包含多个与保存的数组对应的npy文件(由save()函数保存),文件名对应数组名
    读取.npz文件时使用np.load()函数,返回的是一个类似于字典的对象,因此可以通过数组名作为关键字对多个数组进行访问
    import numpy as np
    
    # 将多个数组保存到磁盘
    a = np.arange(5)
    b = np.arange(6)
    c = np.arange(7)
    np.savez('test', a, b, c_array=c)  # c_array是数组c的命名
    # 读取数组
    data = np.load('test.npz')  #类似于字典{‘arr_0’:a,’arr_1’:b,’c_array’:c}
    print('arr_0 : ', data['arr_0'])
    print('arr_1 : ', data['arr_1'])
    print('c_array : ', data['c_array'])
    
    --------------------------------------------------------------------------------
    arr_0 :  [0 1 2 3 4]
    arr_1 :  [0 1 2 3 4 5]
    c_array :  [0 1 2 3 4 5 6]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值