最近有很多同学想要学习大模型,于是我根据多年的学习经验,总结了一些适合你从 0 到 1 的入门经验,分享给大家呀
1、几个学习大模型必备:
教程:动手学大模型Dive into LLMs
《动手学大模型 Dive into LLMs》:内容丰富,从基础概念到实际操作都有详细讲解,通过实践案例帮助理解大模型的原理和应用,适合初学者逐步深入学习😃。
李沐《大模型基础》:李沐老师的讲解深入浅出,对大模型的基础知识进行了系统梳理,有助于建立扎实的理论基础,同时结合实际案例分析,让抽象的知识变得更易理解🤓。
书籍:人大《大语言模型》、从零构建大语言模型《Build a Large Language Model (From Scratch)》
人大《大语言模型》:具有权威性和系统性,涵盖了大语言模型的各个方面,从理论到实践都有详细阐述,对于全面了解大语言模型的发展、原理和应用场景非常有帮助📚。
《从零构建大语言模型 (Build a Large Language Model (From
Scratch))》:专注于从零开始构建大语言模型,对于想要深入理解模型构建细节和原理的学习者来说是很好的参考资料,能够锻炼实践能力和深入思考能力🧐。
B站:斯坦福CS231N
(计算机视觉)、CS224(自然语言处理)、CS229
(机器学习)。MIT:introduction to deeplearning`(深度学习导论)
2、大模型怎么入门:
首先,将数学和编程基础打牢:
- 熟练掌握 Python 编程语言,以及相关的数据处理和计算工具如numpy、pandas等扎实
- 掌握微积分、线性代数、概率论等数学基础知识,为理解和优化模型提供支撑。
- 深入学习Pytorch等深度学习框架,了解其原理和使用方法,能够构建和训练基本的神经网络模型。
然后,掌握神经网络和大模型核心技术:
- 精通各类神经网络结构,如CNN用于图像处理、RNN(包括LSTM等变体)用于序列处理、Transformer及其在大模型中的应用。
- 理解大模型的训练方法,包括梯度下降算法及其优化变体,掌握如何调整超参数以提高模型性能。
- 深入研究大模型技术,如开源模型(以LLAMA等为代表)的架构和特点,掌握微调技术(如Lora微调)、偏好对齐(如RLHF等强化学习方法)以及大模型的应用编排(包括检索增强生成、Agent工具开发等)。
多尝试动手实践大模型项目,以及深入分析大模型相关论文,理解前沿研究成果和创新思路,同时参考开源代码实现复现和拓展。
想学大模型的同学,希望可以帮你少走点弯路,
读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用
对于0基础小白入门:
如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。
包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费
】🆓
👉AI大模型学习路线汇总👈
大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉大模型实战案例👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
👉大模型视频和PDF合集👈
观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费
】🆓