4 - 微分方程

4 - 微分方程

一、通过代数变换处理 - 有固定步骤

1.变量可分离型

分离变量成 f ( x ) d x = g ( y ) d y f(x)dx = g(y)dy f(x)dx=g(y)dy 的形式,然后等号两端同时积分

2.可化为 变量可分离型

该类型方程的一般形式为 d y d x = f ( a x + b y + c ) \frac{dy}{dx}=f(ax+by+c) dxdy=f(ax+by+c)
u = a x + b y + c u=ax+by+c u=ax+by+c ,于是有 d u d x = a + b d y d x \frac{du}{dx}=a+b\frac{dy}{dx} dxdu=a+bdxdy

3.齐次型微分方程

将原方程的形式化为 d y d x = φ ( y x ) \frac{dy}{dx}=\varphi(\frac{y}{x}) dxdy=φ(xy) 的形式
然后令 u = y / x u=y/x u=y/x ,分离变量即可得到方程的解

4.伯努利方程(化为一阶线性)

伯努利方程的形式为 y ′ + p ( x ) y = q ( x ) y n   ( n ≠ 0 , 1 ) y^\prime +p(x)y=q(x)y^{n} \text{ } (n \neq 0,1) y+p(x)y=q(x)yn (n=0,1)

解题步骤:

  1. y − n y ′ + p ( x ) y 1 − n = q ( x ) y^{-n}y^\prime + p(x)y^{1-n} = q(x) yny+p(x)y1n=q(x)

  2. z = y 1 − n z = y^{1-n} z=y1n

    于是有
    d z d x = ( 1 − n ) y − n d y d x y − n ⋅ y ′ = 1 1 − n z ′ y 1 − n = z \begin{aligned} &\frac{dz}{dx} = (1-n)y^{-n}\frac{dy}{dx} \\ &y^{-n}\cdot y^\prime=\frac{1}{1-n}z^\prime \\ &y^{1-n}=z \end{aligned} dxdz=(1n)yndxdyyny=1n1zy1n=z

  3. 代入步骤 1 的方程,得到 1 1 − n z ′ + p ( x ) z = q ( x ) \frac{1}{1-n}z^\prime+p(x)z=q(x) 1n1z+p(x)z=q(x)

  4. 解步骤 3 得到的一阶线性非齐次微分方程即可(可用一阶线性非齐次微分方程通解公式)

5.二阶可降阶型微分方程

  1. y ′ ′ = f ( x , y ′ ) y^{\prime\prime} = f(x,y^\prime) y=f(x,y)

    y ′ = p ( x ) y^\prime = p(x) y=p(x) ,于是有 y ′ ′ = p ′ y^{\prime\prime} = p^\prime y=p

    代入方程得 d p d x = f ( x , p ) \frac{dp}{dx} = f(x,p) dxdp=f(x,p) ,此时原方程变为一阶微分方程

    用一阶微分方程通解公式可以解得 y ′ = φ ( x , C 1 ) y\prime = \varphi(x,C_{1}) y=φ(x,C1)

    y = ∫ φ ( x , C 1 ) d x y = \int \varphi(x,C_{1})dx y=φ(x,C1)dx

  2. y ′ ′ = f ( y , y ′ ) y^{\prime\prime}=f(y,y\prime) y=f(y,y)

    y ′ = p y^\prime = p y=p ,于是有 y ′ ′ = d p d x ⋅ d y d x = p d p d y y\prime\prime = \frac{dp}{dx} \cdot \frac{dy}{dx} = p\frac{dp}{dy} y=dxdpdxdy=pdydp

    代入方程得 p d p d y = f ( y , p ) p\frac{dp}{dy} = f(y,p) pdydp=f(y,p) ,此时原方程变为一阶微分方程

    用一阶微分方程通解公式可以解得 y ′ = φ ( y , C 1 ) y^\prime = \varphi(y,C_{1}) y=φ(y,C1)

    分离变量法可得 y = ψ ( x ) y=\psi (x) y=ψ(x)

6.欧拉方程

欧拉方程的一般形式: x 2 d 2 y d x 2 + p x d y d x + q y = f ( x ) x^{2}\frac{d^{2}y}{dx^{2}}+px\frac{dy}{dx}+qy=f(x) x2dx2d2y+pxdxdy+qy=f(x),其固定解法如下:

  1. x>0 时,令 x = e t x = e^{t} x=et,则 t = l n x t = lnx t=lnx,于是有
    d t d x = 1 x d y d x = d y d t ⋅ d t d x = 1 x ⋅ d y d t d 2 y d x 2 = d d x ( 1 x ⋅ d y d t ) = − 1 x 2 d y d t + 1 x d d x ( d y d t ) = − 1 x 2 d y d t + 1 x 2 d 2 y d t 2 \begin{aligned} \frac{dt}{dx}&=\frac{1}{x} \\ \frac{dy}{dx}&=\frac{dy}{dt}\cdot \frac{dt}{dx}=\frac{1}{x}\cdot\frac{dy}{dt} \\ \frac{d^{2}y}{dx^{2}} &=\frac{d}{dx}(\frac{1}{x}\cdot \frac{dy}{dt})=-\frac{1}{x^{2}}\frac{dy}{dt}+\frac{1}{x}\frac{d}{dx}(\frac{dy}{dt})=-\frac{1}{x^{2}}\frac{dy}{dt}+\frac{1}{x^{2}}\frac{d^{2}y}{dt^{2}} \end{aligned} dxdtdxdydx2d2y=x1=dtdydxdt=x1dtdy=dxd(x1dtdy)=x21dtdy+x1dxd(dtdy)=x21dtdy+x21dt2d2y
    代入之后,原方程可以化为
    d 2 y d t 2 + ( p − 1 ) d y d t + q y = f ( e t ) \frac{d^{2}y}{dt^{2}}+(p-1)\frac{dy}{dt}+qy=f(e^{t}) dt2d2y+(p1)dtdy+qy=f(et)
    于是可以视为一般的二阶非齐次线性微分方程求解

    解得通解之后记得用 t = l n x t=lnx t=lnx 回代

  2. x<0时,令 x = − e t x=-e^{t} x=et,同步骤 1 可得

二、通过公式处理

1.一阶线性非齐次微分方程的通解公式

方程的基本形式为 y ′ + p ( x ) y = q ( x ) y^\prime+p(x)y=q(x) y+p(x)y=q(x)
其通解公式为:
y = e − ∫ p ( x ) d x [ ∫ e ∫ p ( x ) d x ⋅ q ( x ) d x + C ] y=e^{-\int p(x)dx}[\int e^{\int p(x)dx}·q(x)dx+C] y=ep(x)dx[ep(x)dxq(x)dx+C]
【注】使用通解公式前建议先看看能否分离变量

2.二阶常系数齐次微分方程通解

二阶常系数齐次微分方程的一般形式为 y ′ ′ + p y ′ + q y = 0 y^{\prime\prime}+py^\prime+qy=0 y+py+qy=0
列出特征方程 λ 2 + p λ + q = 0 \lambda^{2}+p\lambda+q=0 λ2+pλ+q=0 ,求特征方程的特征根 λ \lambda λ

  1. λ 1 ≠ λ 2 \lambda_{1} \neq \lambda_{2} λ1=λ2 时,通解为:
    y = C 1 e λ 1 x + C 2 e λ 2 x y=C_{1}e^{\lambda_{1}x}+C_{2}e^{\lambda_{2}x} y=C1eλ1x+C2eλ2x

  2. λ 1 = λ 2 = λ \lambda_{1} = \lambda_{2} = \lambda λ1=λ2=λ 时,通解为:
    y = ( C 1 + C 2 x ) e λ x y = (C_{1}+C_{2}x)e^{\lambda x} y=(C1+C2x)eλx

  3. λ = α ± β i \lambda = \alpha \pm \beta i λ=α±βi 时,通解为:
    y = e α x ( C 1 c o s β x + C 2 s i n β x ) y=e^{\alpha x}(C_{1}cos\beta x + C_{2}sin\beta x) y=eαx(C1cosβx+C2sinβx)

3.n阶常系数齐性微分方程的通解

同二阶一样写出特征方程并求出特征根

  1. 单实根 λ \lambda λ 时,通解为:
    y = C e λ x y=Ce^{\lambda x} y=Ceλx
  2. k重实根 λ \lambda λ 时,通解为:
    y = ( C 1 + C 2 x + C 3 x 2 + ⋯ + C k x k − 1 ) e λ x y = (C_{1}+C_{2}x+C_{3}x^{2}+ \cdots +C_{k}x^{k-1})e^{\lambda x} y=(C1+C2x+C3x2++Ckxk1)eλx
  3. 单复根 α ± β i \alpha \pm \beta i α±βi 时,通解为:
    y = e α x ( C 1 c o s β x + C 2 s i n β x ) y=e^{\alpha x}(C_{1}cos\beta x + C_{2}sin\beta x) y=eαx(C1cosβx+C2sinβx)
  4. k重复根 α ± β i \alpha \pm \beta i α±βi 时,通解为:
    y = e α x [ ( C 1 + C 2 x + C 3 x 2 ⋯ + C k x k − 1 ) c o s β x + ( D 1 + D 2 x + D 3 x 2 ⋯ + D k x k − 1 ) s i n β x ] y=e^{\alpha x}[(C_{1}+C_{2}x+C_{3}x^{2}\cdots+C_{k}x^{k-1})cos\beta x + (D_{1}+D_{2}x+D_{3}x^{2}\cdots+D_{k}x^{k-1})sin\beta x] y=eαx[(C1+C2x+C3x2+Ckxk1)cosβx+(D1+D2x+D3x2+Dkxk1)sinβx]

三、微分方程解的结构

  1. y ( x ) = C 1 y 1 ( x ) + C 2 y 2 ( x ) y(x) = C_{1}y_{1}(x)+C_{2}y_{2}(x) y(x)=C1y1(x)+C2y2(x) y ′ ′ + p ( x ) y ′ + q ( x ) = 0 y^{\prime\prime}+p(x)y^\prime+q(x)=0 y+p(x)y+q(x)=0 的通解
    其中 y 1 ( x ) 、 y 2 ( x )   是   y ′ ′ + p ( x ) y ′ + q ( x ) = 0   的 解 , 且 y 1 ( x ) y 2 ( x ) ≠ C  (线性无关) y_{1}(x) 、 y_{2}(x)\text{ } 是\text{ }y^{\prime\prime}+p(x)y^\prime+q(x)=0\text{ }的解,且\frac{y_{1}(x)}{y_{2}(x)}\neq C\text{ (线性无关)} y1(x)y2(x)  y+p(x)y+q(x)=0 y2(x)y1(x)=C (线性无关)

  2. y ( x ) = y 0 ( x ) + y ∗ ( x ) y(x)=y_{0}(x)+y^{*}(x) y(x)=y0(x)+y(x) y ′ ′ + p ( x ) y ′ + q ( x ) = f ( x ) y^{\prime\prime}+p(x)y^\prime+q(x)=f(x) y+p(x)y+q(x)=f(x) 的通解
    其中 y 0 ( x ) = C 1 y 1 ( x ) + C 2 y 2 ( x ) y_{0}(x) = C_{1}y_{1}(x)+C_{2}y_{2}(x) y0(x)=C1y1(x)+C2y2(x)   y ′ ′ + p ( x ) y ′ + q ( x ) = 0   的 通 解 \text{ }y^{\prime\prime}+p(x)y^\prime+q(x)=0\text{ }的通解  y+p(x)y+q(x)=0 
    y ∗ ( x ) y^{*}(x) y(x) y ′ ′ + p ( x ) y ′ + q ( x ) = f ( x ) y^{\prime\prime}+p(x)y^\prime+q(x)=f(x) y+p(x)y+q(x)=f(x) 的特解

  3. y ( x ) = y 1 ∗ ( x ) + y 2 ∗ ( x ) y(x)=y_{1}^{*}(x)+y_{2}^{*}(x) y(x)=y1(x)+y2(x) y ′ ′ + p ( x ) y ′ + q ( x ) = f 1 ( x ) + f 2 ( x ) y^{\prime\prime}+p(x)y^\prime+q(x)=f_{1}(x)+f_{2}(x) y+p(x)y+q(x)=f1(x)+f2(x) 的通解

    其中

    y 1 ∗ ( x ) y_{1}^{*}(x) y1(x) y ′ ′ + p ( x ) y ′ + q ( x ) = f 1 ( x ) y^{\prime\prime}+p(x)y^\prime+q(x)=f_{1}(x) y+p(x)y+q(x)=f1(x) 的解

    y 2 ∗ ( x ) y_{2}^{*}(x) y2(x) y ′ ′ + p ( x ) y ′ + q ( x ) = f 2 ( x ) y^{\prime\prime}+p(x)y^\prime+q(x)=f_{2}(x) y+p(x)y+q(x)=f2(x) 的解

四、两种特殊微分方程的特解

【注】 P n ( x ) P_{n}(x) Pn(x) 表示 x 的 n 次多项式, Q l ( 1 ) ( x ) , Q l ( 2 ) ( x ) Q_{l}^{(1)}(x),Q_l^{(2)}(x) Ql(1)(x)Ql(2)(x),是两个不同的 x 的 l l l 次多项式

y ′ ′ + p y ′ + q y = f ( x ) y^{\prime\prime}+py^\prime+qy=f(x) y+py+qy=f(x) ,需要会解两种情况:

  1. f ( x ) = P n ( x ) e α x f(x)=P_{n}(x)e^{\alpha x} f(x)=Pn(x)eαx y ∗ ( x ) = e α x Q n ( x ) x k y^{*}(x) = e^{\alpha x}Q_{n}(x)x^{k} y(x)=eαxQn(x)xk
    其 中 k = { 0 , α 不 是 特 征 根 1 , α 是 特 征 根 2 , α 是 二 重 特 征 根 其中\qquad k= \begin{cases} 0, &\alpha 不是特征根 \\ 1, &\alpha 是特征根 \\ 2, &\alpha 是二重特征根 \end{cases} k=0,1,2,ααα

  2. f ( x ) = e α x [ P n ( x ) c o s β x + P m ( x ) s i n β x ] f(x) = e^{\alpha x}[P_{n}(x)cos\beta x+P_{m}(x)sin\beta x] f(x)=eαx[Pn(x)cosβx+Pm(x)sinβx]
    y ∗ ( x ) = e α x [ Q l ( 1 ) ( x ) c o s β x + Q l ( 2 ) ( x ) s i n β x ] y^{*}(x)=e^{\alpha x}[Q_{l}^{(1)}(x)cos\beta x+Q_{l}^{(2)}(x)sin\beta x] y(x)=eαx[Ql(1)(x)cosβx+Ql(2)(x)sinβx]

    其中 l = m a x { m , n } l = max\{m,n\} l=max{m,n}
    k = { 0 , α + β i   不 是 特 征 根 1 , α + β i   是 特 征 根 k= \begin{cases} 0, &\alpha + \beta i \ 不是特征根 \\ 1, &\alpha + \beta i \ 是特征根 \end{cases} k={0,1,α+βi α+βi 

【附1】微分方程的命名

二阶线性微分方程的一般形式: y ′ ′ + p ( x ) y ′ + q ( x ) y = f ( x ) y^{\prime\prime} + p(x)y^\prime + q(x)y = f(x) y+p(x)y+q(x)y=f(x)

  1. f ( x ) = 0 f(x) = 0 f(x)=0 时,为齐次;否则为非齐次
  2. p ( x ) 、 q ( x ) p(x)、q(x) p(x)q(x) 为常数时,为常系数微分方程
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值