5 - 多元函数微分学

5 - 多元函数微分学

一、求导公式法与定义法的应用场景

公式法 :在已知函数可导的前提下,求函数在 某一点某一区间 上的导数,使用公式法

定义法 :当我们不确定函数是否处处可导的情况下,使用定义法来求函数在 某一点 上是否可导及其导数值

【注】 :当函数不是初等函数时,公式法没有对应的求导公式,只能使用定义法;但诸如 x x = x ln ⁡ x x^x=x\ln x xx=xlnx 可以用公式法处理

二、全微分与偏导数

1. 全微分定义

如果 z = f ( x , y ) z=f(x,y) z=f(x,y) 在点 ( x , y ) (x,y) (x,y) 的全增量 Δ z = f ( x + Δ x , y + Δ y ) − f ( x , y ) \Delta z=f(x+\Delta x,y+\Delta y)-f(x,y) Δz=f(x+Δx,y+Δy)f(x,y) ,可表示为
Δ z = A Δ x + B Δ y + o ( ( Δ x ) 2 + ( Δ y ) 2 ) \Delta z=A\Delta x+B\Delta y+o(\sqrt{(\Delta x)^2+(\Delta y)^2}) Δz=AΔx+BΔy+o((Δx)2+(Δy)2 )
A,B仅与 x,y 有关,则 A Δ x + B Δ y A\Delta x+B\Delta y AΔx+BΔy 为函数 z = f ( x , y ) z=f(x,y) z=f(x,y) 在点 ( x , y ) (x,y) (x,y)全微分 ,记为 d z = A Δ x + B Δ y dz=A\Delta x+B\Delta y dz=AΔx+BΔy

【注】 一般求全微分为 d z = ∂ z ∂ x d x + ∂ z ∂ y d y dz=\frac{\partial z}{\partial x}dx+\frac{\partial z}{\partial y}dy dz=xzdx+yzdy

【注】 偏导数定义与一元函数类似 f x ′ ( x , y ) = ∂ f ( x , y ) ∂ x = lim ⁡ Δ x → 0 f ( x + Δ x , y ) − f ( x , y ) Δ x f^\prime_x(x,y)=\frac{\partial f(x,y)}{\partial x}=\lim_{\Delta x\rightarrow0} \frac{f(x+\Delta x,y)-f(x,y)}{\Delta x} fx(x,y)=xf(x,y)=limΔx0Δxf(x+Δx,y)f(x,y)

2. 公式法判断是否可微的基本步骤

  1. 写出全增量 Δ z = f ( x 0 + Δ x , y 0 + Δ y ) − f ( x 0 , y 0 ) \Delta z=f(x_0+\Delta x,y_0+\Delta y)-f(x_0,y_0) Δz=f(x0+Δx,y0+Δy)f(x0,y0)

  2. 写出线性增量 A Δ x + B Δ y A\Delta x+B\Delta y AΔx+BΔy 其中 A = f x ′ ( x 0 , y 0 ) , A = f y ′ ( x 0 , y 0 ) A=f^\prime_x(x_0,y_0),A=f^\prime_y(x_0,y_0) A=fx(x0,y0)A=fy(x0,y0)

  3. 做极限 lim ⁡ Δ x → 0 , Δ y → 0 Δ z − ( A Δ x + B Δ y ) ( Δ x ) 2 + ( Δ y ) 2 \lim_{\Delta x\rightarrow0,\Delta y\rightarrow0}\frac{\Delta z-(A\Delta x+B\Delta y)}{\sqrt{(\Delta x)^2+(\Delta y)^2}} limΔx0,Δy0(Δx)2+(Δy)2 Δz(AΔx+BΔy) ,极限为 0 时,则原函数在 ( x 0 , y 0 ) (x_0,y_0) (x0,y0) 处可微,否则不可微

3. 连续、偏导数与全微分的关系

一阶偏导数连续
可微
偏导数存在
原函数连续
函数极限存在

三、多元函数微分法则

1. 链式求导法则

  1. z = f [ u ( t ) , v ( t ) ] z=f[u(t),v(t)] z=f[u(t),v(t)] 时 ,( 下面的也叫 全导数
    d z d t = ∂ z ∂ u ⋅ d u d t + ∂ z ∂ v ⋅ d v d t \frac{dz}{dt}=\frac{\partial z}{\partial u}\cdot \frac{du}{dt}+\frac{\partial z}{\partial v}\cdot \frac{dv}{dt} dtdz=uzdtdu+vzdtdv
    【注】 通常 ∂ z ∂ u \frac{\partial z}{\partial u} uz 也记为 f 1 ′ f^\prime_1 f1 ∂ z ∂ v \frac{\partial z}{\partial v} vz 也记为 f 2 ′ f^\prime_2 f2 ;二阶偏导数连续时 f 12 ′ ′ = f 21 ′ ′ f^{\prime\prime}_{12}=f^{\prime\prime}_{21} f12=f21

  2. z = f [ u ( x , y ) , v ( x , y ) ] z=f[u(x,y),v(x,y)] z=f[u(x,y),v(x,y)] 时,
    ∂ z ∂ x = ∂ z ∂ u ⋅ d u d x + ∂ z ∂ v ⋅ d v d x ∂ z ∂ y = ∂ z ∂ u ⋅ d u d y + ∂ z ∂ v ⋅ d v d y \frac{\partial z}{\partial x}=\frac{\partial z}{\partial u}\cdot \frac{du}{dx}+\frac{\partial z}{\partial v}\cdot \frac{dv}{dx} \\ \frac{\partial z}{\partial y}=\frac{\partial z}{\partial u}\cdot \frac{du}{dy}+\frac{\partial z}{\partial v}\cdot \frac{dv}{dy} xz=uzdxdu+vzdxdvyz=uzdydu+vzdydv

  3. z = f [ u ( x , y ) , v ( y ) ] z=f[u(x,y),v(y)] z=f[u(x,y),v(y)] 时,
    ∂ z ∂ x = ∂ z ∂ u ⋅ d u d x ∂ z ∂ y = ∂ z ∂ u ⋅ d u d y + ∂ z ∂ v ⋅ d v d y \frac{\partial z}{\partial x}=\frac{\partial z}{\partial u}\cdot \frac{du}{dx} \\ \frac{\partial z}{\partial y}=\frac{\partial z}{\partial u}\cdot \frac{du}{dy}+\frac{\partial z}{\partial v}\cdot \frac{dv}{dy} xz=uzdxduyz=uzdydu+vzdydv
    可以参照复合函数求导法则

2. 隐函数求导公式

对隐函数(方程) F ( x , y , z ) = 0 F(x,y,z)=0 F(x,y,z)=0 ( x 0 , y 0 , z 0 ) (x_0,y_0,z_0) (x0,y0,z0) 的某个邻域内求偏导
∂ z ∂ x = − F x ′ F z ′ , ∂ z ∂ y = − F y ′ F z ′ \frac{\partial z}{\partial x} = -\frac{F^\prime_x}{F^\prime_z},\frac{\partial z}{\partial y} = -\frac{F^\prime_y}{F^\prime_z} xz=FzFx,yz=FzFy
【注】 此处要求 F z ′ ( x 0 , y 0 , z 0 ) ≠ 0 F^\prime_z(x_0,y_0,z_0) \neq 0 Fz(x0,y0,z0)=0 即上式右侧分母不为 0 ,偏导数才存在。

从几何意义上讲, F z ′ = 0 F^\prime_z=0 Fz=0 时,所得导数值为无穷大,其切线斜率无穷大并垂直于 x/y 轴,即一组(x,y)对应多个 z 值,不能确定隐函数

F ( x , y ) = 0 F(x,y)=0 F(x,y)=0 ,为
∂ y ∂ x = − F x ′ F y ′ ( F y ′ ≠ 0 ) \frac{\partial y}{\partial x} = -\frac{F^\prime_x}{F^\prime_y}\qquad (F^\prime_y\neq0) xy=FyFx(Fy=0)

四、多元函数极值与最值

1. 求极值-判别式法

  1. 必要条件

    对于 z = f ( x , y ) z=f(x,y) z=f(x,y) ,在点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0) 处取得极值,且在该点处 偏导数存在 ,则必有:
    f x ′ ( x 0 , y 0 ) = 0   且   f y ′ ( x 0 , y 0 ) = 0 f^\prime_x(x_0,y_0)=0\ 且\ f^\prime_y(x_0,y_0)=0 fx(x0,y0)=0  fy(x0,y0)=0
    【注】 如上,偏导数为 0 的点是 驻点

  2. 充分条件

    驻点处,记:
    A = f x x ′ ′ ( x 0 , y 0 ) B = f x y ′ ′ ( x 0 , y 0 ) C = f y y ′ ′ ( x 0 , y 0 ) A=f^{''}_{xx}(x_0,y_0) \\ B=f^{''}_{xy}(x_0,y_0) \\ C=f^{''}_{yy}(x_0,y_0) \\ A=fxx(x0,y0)B=fxy(x0,y0)C=fyy(x0,y0)

    Δ = ∣ A B B C ∣ = A C − B 2 \Delta= \begin{vmatrix} A & B \\ B & C \\ \end{vmatrix} =AC-B^2 \\ Δ=ABBC=ACB2

    Δ < 0 \Delta<0 Δ<0 时,该点不是极值点
    Δ > 0 \Delta>0 Δ>0 时,该点是极值点,其中 A > 0 A>0 A>0 时为极小值点, A < 0 A<0 A<0 时为极大值点

    【注】 二阶偏导数连续时 f x y ′ ′ = f y x ′ ′ f^{\prime\prime}_{xy}=f^{\prime\prime}_{yx} fxy=fyx

2. 求最值和极值-拉格朗日乘数法

拉格朗日乘数法用于求 z = f ( x , y ) z=f(x,y) z=f(x,y) 在条件 φ ( x , y ) = 0 \varphi(x,y)=0 φ(x,y)=0 的极值和最值,一般步骤为:

  1. 构造函数
    F ( x , y , λ ) = f ( x , y ) + λ φ ( x , y ) F(x,y,\lambda)=f(x,y)+\lambda\varphi(x,y) F(x,y,λ)=f(x,y)+λφ(x,y)

  2. F ( x , y , λ ) F(x,y,\lambda) F(x,y,λ) 求偏导数,构建方程组
    { F x ′ = f x ′ ( x , y ) + λ φ x ′ ( x , y ) = 0 F y ′ = f y ′ ( x , y ) + λ φ y ′ ( x , y ) = 0 F λ ′ = φ ( x , y ) = 0 \begin{cases} F^{\prime}_x=f^\prime_x(x,y)+\lambda\varphi^\prime_x(x,y)=0 \\ F^{\prime}_y=f^\prime_y(x,y)+\lambda\varphi^\prime_y(x,y)=0 \\ F^\prime_\lambda=\varphi(x,y)=0 \end{cases} Fx=fx(x,y)+λφx(x,y)=0Fy=fy(x,y)+λφy(x,y)=0Fλ=φ(x,y)=0

  3. 解方程,找到所有可疑点的坐标,并判断是否是极值点(如果求最值则不用判别是否是极值)

  4. 将坐标代回 z = f ( x , y ) z=f(x,y) z=f(x,y) ,比较各极值的大小后可以的到最值

解方程时计算量可能稍大,大胆的去算!

【注】 对于 z = f ( x , y ) z=f(x,y) z=f(x,y) ,可以用 极值/最值 点相同的函数代替来化简计算,比如 z = x 2 + y 2 z=\sqrt{x^2+y^2} z=x2+y2 可用 z = x 2 + y 2 z=x^2+y^2 z=x2+y2 代替

五、常用运算

1. 方程两边求全微分

F ( x , y , z ) = 0 ⟹ F x ′ d x + F y ′ d y + F z ′ d z = 0 F(x,y,z)=0\Longrightarrow F^\prime_xdx+F^\prime_ydy+F^\prime_zdz=0 F(x,y,z)=0Fxdx+Fydy+Fzdz=0

2. 多元函数求极限

例 lim ⁡ x → 0 , y → 0 x y x 2 + y 2 令   y = k x 原 式 = lim ⁡ x → 0 k x 2 ( 1 + k 2 ) x 2 = lim ⁡ x → 0 k 1 + k 2 ∴ 极 限 不 存 在 \begin{aligned} 例&\lim_{x\rightarrow0,y\rightarrow0} \frac{xy}{x^2+y^2} \\ &令\ y=kx \\ 原式&=\lim_{x\rightarrow0} \frac{kx^2}{(1+k^2)x^2} \\ &=\lim_{x\rightarrow0}\frac{k}{1+k^2} \\ &\therefore 极限不存在 \end{aligned} x0,y0limx2+y2xy y=kx=x0lim(1+k2)x2kx2=x0lim1+k2k

3. 微分间的运算

  1. d x ⋅ d x = d x 2 = 2 x d x dx\cdot dx=dx^2=2xdx dxdx=dx2=2xdx

  2. d 2 x = 0 d^2x=0 d2x=0 ,可以认为:
    d 2 y d x 2 = y ′ ′ ( x ) d 2 y = y ′ ′ ( x ) d x 2 令   y = x , 则 有   d 2 y = ( x ) ′ ′ d x 2 = 0 \begin{aligned} \frac{d^2y}{dx^2}=&y^{\prime\prime}(x) \\ d^2y=&y^{\prime\prime}(x)dx^2 \\ 令\ y=x,则有\ d^2y=&(x)^{\prime\prime}dx^2=0 \end{aligned} dx2d2y=d2y= y=x d2y=y(x)y(x)dx2(x)dx2=0

    4. 二阶偏导数相等

设连续函数 f ( x , y ) f(x,y) f(x,y) ,给定了
∂ f ( x , y ) ∂ x = φ ( x , y ) ∂ f ( x , y ) ∂ y = ψ ( x , y ) \frac{\partial f(x,y)}{\partial x}=\varphi(x,y) \\ \frac{\partial f(x,y)}{\partial y}=\psi(x,y) xf(x,y)=φ(x,y)yf(x,y)=ψ(x,y)
可以利用二阶偏导数相等( ∂ 2 f ( x , y ) ∂ x ∂ y \frac{\partial^2 f(x,y)}{\partial x\partial y} xy2f(x,y)),构造方程,即
φ ( x , y ) ∂ y = ψ ( x , y ) ∂ x \frac{\varphi(x,y)}{\partial y}=\frac{\psi(x,y)}{\partial x} yφ(x,y)=xψ(x,y)

  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值