范数的定义
若X是数域K上的线性空间,泛函 ║·║: X->R 满足:
1. 正定性:║x║≥0,且║x║=0 <=> x=0;
2. 正齐次性:║cx║=│c│║x║;
3. 次可加性(三角不等式):║x+y║≤║x║+║y║ 。
那么║·║称为X上的一个范数。
(注意到║x+y║≤║x║+║y║中如令y=-x,再利用║-x║=║x║可以得到║x║≥0,即║x║≥0在定义中不是必要的。)
如果
线性空间上定义了范数,则称之为
赋范线性空间。
注记:范数与内积,度量,拓扑是相互联系的。
1. 利用范数可以诱导出度量:d(x,y)=║x-y║,进而诱导出拓扑,因此赋范线性空间是
度量空间。
但是反过来度量不一定可以由范数来诱导。
2. 如果赋范线性空间作为(由其范数自然诱导度量d(x,y)=║x-y║的)度量空间是完备的,即任何
柯西(Cauchy)序列在其中都收敛,则称这个赋范线性空间为
巴拿赫(Banach)空间。
3. 利用内积<·,·>可以诱导出范数:║x║=<x,x>^{1/2}。
反过来,范数不一定可以诱导内积。当范数满足平行四边形公式║x+y║^2+║x-y║^2=2(║x║^2+║y║^2)时,这个范数一定可以诱导内积。
完备的内积空间称为
希尔伯特(Hilbert)空间。
4. 如果去掉范数定义中的正定性,那么得到的泛函称为半范数(seminorm或者叫准范数),相应的线性空间称为
赋准范线性空间。完备的赋准范线性空间称为
Fréchet空间。
对于X上的两种范数║x║α,║x║β,若存在正常数C满足
║x║β≤C║x║α