范数

本文探讨了范数在数域K上线性空间中的定义,包括算子范数和有限维空间的范数。详细阐述了范数的基本性质、常用范数类型,并深入讲解了矩阵范数的诱导范数、非诱导范数、矩阵的谱半径及其与酉不变范数的关系。
摘要由CSDN通过智能技术生成

设X是数域K上线性空间,称║˙║为X上的范数(norm)。

范数的定义

  若X是数域K上的线性空间,泛函 ║·║: X->R 满足:
  1. 正定性:║x║≥0,且║x║=0 <=> x=0;
  2. 正齐次性:║cx║=│c│║x║;
  3. 次可加性(三角不等式):║x+y║≤║x║+║y║ 。
  那么║·║称为X上的一个范数。
  (注意到║x+y║≤║x║+║y║中如令y=-x,再利用║-x║=║x║可以得到║x║≥0,即║x║≥0在定义中不是必要的。)
  如果 线性空间上定义了范数,则称之为 赋范线性空间
  注记:范数与内积,度量,拓扑是相互联系的。
  1. 利用范数可以诱导出度量:d(x,y)=║x-y║,进而诱导出拓扑,因此赋范线性空间是 度量空间
  但是反过来度量不一定可以由范数来诱导。
  2. 如果赋范线性空间作为(由其范数自然诱导度量d(x,y)=║x-y║的)度量空间是完备的,即任何 柯西(Cauchy)序列在其中都收敛,则称这个赋范线性空间为 巴拿赫(Banach)空间
  3. 利用内积<·,·>可以诱导出范数:║x║=<x,x>^{1/2}。
  反过来,范数不一定可以诱导内积。当范数满足平行四边形公式║x+y║^2+║x-y║^2=2(║x║^2+║y║^2)时,这个范数一定可以诱导内积。
  完备的内积空间称为 希尔伯特(Hilbert)空间
  4. 如果去掉范数定义中的正定性,那么得到的泛函称为半范数(seminorm或者叫准范数),相应的线性空间称为 赋准范线性空间。完备的赋准范线性空间称为 Fréchet空间
  对于X上的两种范数║x║α,║x║β,若存在正常数C满足
  ║x║β≤C║x║α
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值