Ubuntu2204+ROS2(humble)+usb_cam内参标定

1、安装usb_cam包

pip install pydantic==1.10.14

sudo apt install ros-humble-usb-cam

# 测试打开相机
ros2 launch usb_cam camera.launch.py

# 显示图像
ros2 run image_view image_view image:=/camera1/image_raw

2、安装 camera_calibration

sudo apt install ros-humble-camera-calibration

3、执行标定程序

ros2 run camera_calibration cameracalibrator --size 9x6 --square 0.026 image:=/camera1/image_raw camera:=/usb_cam

参数说明:

  1. --size 当前标定板大小
  2. --square 每个小棋盘格的边长,单位米
  3. image:=/camera1/image_raw 图像来源主题
  4. camera:=/usb_cam 相机名称

4、通过不停的移动标定板:直到X、Y、Size、Skew四个都变成绿色,点击CALIBRATE按钮;

完成后可点击“save”进行保存,文件保存路径在终端里有显示。再次将标定板放在视野里时,右上角会出现一个数值,代表标定误差。

5、点击SAVE按钮

结果以压缩包形式保存在:/tmp/calibrationdata.tar.gz中。

image_width: 640
image_height: 480
camera_name: narrow_stereo
camera_matrix:
  rows: 3
  cols: 3
  data: [620.78764,   0.     , 301.03635,
           0.     , 623.18712, 249.98162,
           0.     ,   0.     ,   1.     ]
distortion_model: plumb_bob
distortion_coefficients:
  rows: 1
  cols: 5
  data: [0.156418, -0.248802, 0.003859, -0.003760, 0.000000]
rectification_matrix:
  rows: 3
  cols: 3
  data: [1., 0., 0.,
         0., 1., 0.,
         0., 0., 1.]
projection_matrix:
  rows: 3
  cols: 4
  data: [635.97443,   0.     , 298.43981,   0.     ,
           0.     , 638.92316, 251.00522,   0.     ,
           0.     ,   0.     ,   1.     ,   0.     ]

image_height、image_width:图片的高、宽

camera_name:摄像头名

camera_matrix:摄像头的内部参数矩阵

distortion_model:畸变模型

distortion_coefficients:畸变模型的系数

rectification_matrix:为矫正矩阵,一般为单位阵

projection_matrix:为外部世界坐标到像平面的投影矩阵

智能网联汽车的安全员高级考试涉及多个方面的专业知识,包括但不限于自动驾驶技术原理、车辆传感器融合、网络安全防护以及法律法规等内容。以下是针对该主题的一些核心知识解析: ### 关于智能网联车安全员高级考试的核心内容 #### 1. 自动驾驶分级标准 国际自动机工程师学会(SAE International)定义了六个级别的自动驾驶等级,从L0到L5[^1]。其中,L3及以上级别需要安全员具备更高的应急处理能力。 #### 2. 车辆感知系统的组成与功能 智能网联车通常配备多种传感器,如激光雷达、毫米波雷达、摄像头和超声波传感器等。这些设备协同工作以实现环境感知、障碍物检测等功能[^2]。 #### 3. 数据通信与网络安全 智能网联车依赖V2X(Vehicle-to-Everything)技术进行数据交换,在此过程中需防范潜在的网络攻击风险,例如中间人攻击或恶意软件入侵[^3]。 #### 4. 法律法规要求 不同国家和地区对于无人驾驶测试及运营有着严格的规定,考生应熟悉当地交通法典中有关自动化驾驶部分的具体条款[^4]。 ```python # 示例代码:模拟简单决策逻辑 def decide_action(sensor_data): if sensor_data['obstacle'] and not sensor_data['emergency']: return 'slow_down' elif sensor_data['pedestrian_crossing']: return 'stop_and_yield' else: return 'continue_driving' example_input = {'obstacle': True, 'emergency': False, 'pedestrian_crossing': False} action = decide_action(example_input) print(f"Action to take: {action}") ``` 需要注意的是,“同学”作为特定平台上的学习资源名称,并不提供官方认证的标准答案集;建议通过正规渠道获取教材并参加培训课程来准备此类资格认证考试
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值