《药物设计cadd-amber-aidd-薛定谔》小白参考

本文详细介绍了计算机辅助药物设计的技术,包括分子动力学模拟、分子对接、虚拟筛选、3D-QSAR模型构建以及人工智能在药物发现中的应用。通过这些技术,可以提高药物研发效率,降低成本,并利用机器学习和深度学习模型进行毒性预测和活性预测,加速新药研发进程。
摘要由CSDN通过智能技术生成

近年来,利用高性能计算机来进行药物虚拟筛选已经被广泛应用,计算机辅助药物设计可以提高药物研发的成功率,降低研发成本,缩短研发周期,是目前创新药物研究的核心技术之一。
分子动力学模拟是分子模拟中最接近实验条件的模拟方法,能够从原子层面给出体系的微观演变过程,直观的展示实验现象发生的机理与规律,促使我们的研究向着更高效、更经济、更有预见性的方向发展。

CADD蛋白结构分析、虚拟筛选、分子对接(蛋白-蛋白、蛋白-多肽等)
AMBER分子动力学能量优化与分析、结合自由能计算专题
薛定谔分子对接、药效团虚拟筛选、3D-QSAR化合物活性分析专题
AIDD人工智能(机器学习与深度学习)药物发现专题
以下内容可以作为参考

一:CADD蛋白结构分析、虚拟筛选、分子对接(蛋白-蛋白、蛋白-多肽)

生物分子互作基础
1.生物分子相互作用研究方法
1.1 蛋白-小分子、蛋白-蛋白相互作用原理 1.2 分子对接研究生物分子相互作用 1.3 蛋白蛋白对接研究分子相互作用
蛋白数据库

  1. PDB 数据库介绍
    1.1 PDB 蛋白数据库功能 1.2 PDB 蛋白数据可获取资源 1.3 PDB 蛋白数据库对药物研发的重要性
    2.PDB 数据库的使用
    2.1 靶点蛋白结构类型、数据解读及下载 2.2 靶点蛋白结构序列下载 2.3 靶点蛋白背景分析
    2.4 相关数据资源获取途径 2.5 批量下载蛋白晶体结构
    蛋白结构分析
  2. Pymol 软件介绍
    1.1 软件安装及初始设置 1.2 基本知识介绍(如氢键等)
    2.Pymol 软件使用
    2.1 蛋白小分子相互作用图解 2.2 蛋白蛋白相互作用图解 2.3 蛋白及小分子表面图、静电势表示
    2.4 蛋白及小分子结构叠加及比对 2.5 绘相互作用力 2.6 Pymol 动画制作
    实例讲解与练习:
    (1)尼洛替尼与靶点的相互作用,列出相互作用的氨基酸,并导出结合模式图
    (2)制作结合口袋表面图
    (3)Bcr/Abl 靶点的 PDB 结构叠合
    (4)制作蛋白相互作用动画
    (5)针对 ACE2 和新冠病毒 Spike 的蛋白晶体复合物,制作蛋白-蛋白相互作用
    同源建模
  3. 同源建模原理介绍
    1.1 同源建模的功能及使用场景 1.2 同源建模的方法
  4. Swiss-Model 同源建模;
    2.1 同源蛋白的搜索(blast 等方法) 2.2 蛋白序列比对 2.3 蛋白模板选择 2.4 蛋白模型搭建
    2.5 模型评价(蛋白拉曼图) 2.6 蛋白模型优化
    在这里插入图片描述

实例讲解与练习:用 2019-nCoV spike 蛋白序列建模,根据相应参数和方法评价模型
小分子构建

  1. ChemDraw 软件介绍
    1.1 小分子结构构建 1.2 小分子理化性质(如分子量、clogP 等)计算
    实例讲解与练习:分别构建大环、氨基酸、DNA、RNA 等分子
    小分子化合物库
  2. 小分子数据库
    1.1 DrugBank、ZINC、ChEMBL 等数据库介绍及使用 1.2 天然产物、中药成分数据库介绍及使用
    生物分子相互作用 Ⅰ
  3. 分子对接基础
    分子对接原理及对接软件介绍
  4. 分子对接软件(Autodock) 使用
    2.1 半柔性对接
    2.1.1 小分子配体优化准备 2.1.2 蛋白受体优化及坐标文件准备 2.1.3 蛋白受体格点计算 2.1.4 半柔性对接计算
    2.2 对接结果评价
    2.2.1 晶体结构构象进行对比 2.2.2 能量角度评价对接结果 2.2.3 聚类分析评价对接结果
    2.2.4 最优结合构象的选择 2.2.5 已知活性化合物对接结果比较
    在这里插入图片描述
    实例讲解与练习:激酶 Bcr/Abl 靶点抑制剂的半柔性对接
    生物分子相互作用 II
    2.3 柔性对接
    2.3.1 小分子配体优化准备 2.3.2 蛋白受体优化及坐标文件准备 2.3.3 蛋白受体格点计算
    2.3.4 柔性对接计算及结果评价 2.3.5 半柔性对接与柔性对接比较与选择
    实例讲解与练习:Bcr/Abl 靶点抑制剂的柔性对接
    虚拟筛选
  5. 分子对接用于虚拟筛选(Autodock)
    3.1 虚拟筛选定义、流程构建及演示 3.2 靶点蛋白选择、化合物库获取
    3.3 虚拟筛选 3.4 结果分析(打分值、能量及相互作用分析)
    实例讲解与练习:Bcr/Abl 靶点抑制剂的虚拟筛选
    小分子格式转换
  6. openbabel 的介绍和使用
    1.1 openbabel 软件介绍
    1.2 小分子结构类型
    拓展对接使用场景 (上)
    1.蛋白-蛋白大分子对接
    1.1 蛋白-蛋白对接的应用场景 1.2 相关程序的介绍 1.3 受体和配体蛋白前期优化准备 1.4 载入受体和配体分子
    1.5 蛋白蛋白相互作用对接位点设定 1.6 蛋白蛋白对接结果分析与解读
    实例讲解与练习:新冠病毒 Spike 蛋白及宿主蛋白 ACE2 的对接
    2.蛋白-多肽对接
    2.1 蛋白-多肽相互作用简介 2.2 蛋白-多肽分子预处理 2.3 蛋白-多肽分子对接 2.4 对接结果展示与分析
    实例讲解与练习:新冠靶点 3CL 与多肽/类多肽抑制剂的对接
    3.含金属离子的蛋白靶点与小分子对接
    3.1 金属酶蛋白-配体的相互作 用介绍 3.2 相关蛋白及配体分子的收集 与预处理
    3.3 金属离子的处理与准备 3.4 金属辅酶蛋白-配体的对接 3.5 对接结果展示与分析
    在这里插入图片描述

实例讲解与练习:基质金属蛋白酶 MMP 及其抑制剂对接
拓展对接使用场景 (下)
4.小分子与小分子对接
4.1 小分子-小分子相互作用简介 4.2 小分子结构预处理 4.3 小分子-小分子对接 4.4 对接结果展示与分析
实例讲解与练习:环糊精与药物小分子的对接
5.核酸-小分子对接
5.1 核酸-小分子的应用场景 5.2 核酸-小分子相互作用简介 5.3 核酸-小分子的预处理 5.4 核酸-小分子对接
5.5 相关结果的展示与分析
实例讲解与练习:DNA G-四链体和配体分子对接
6.共价对接
6.1 共价对接的原理及应用场景 6.2 蛋白和共价结合配体的预处理 6.3 药物分子与靶蛋白的共价对接
6.4 相关结果的展示与分析
在这里插入图片描述

实例讲解与练习:激酶靶点 EGFR 抑制剂的共价对接
基于碎片药物设计

  1. 基于碎片药物设计
    1.1 基于碎片的药物设计与发现 1.2 基于碎片化合物库构建
    1.2.1 骨架替换 1.2.2 碎片连接 1.2.3 碎片生长
    1.3 基于药效团的化合物库生成
    1.4 基于蛋白结合口袋的化合物库生成
    1.5 基于分子描述符的化合物库生成
    1.6 基于 BREED 规则的化合物库构建
    1.7 基于碎片的化合物库筛选
    在这里插入图片描述

实例讲解与练习:基于片段的 Bcr/Abl 靶点抑制剂优化与改造
构效关系分析

  1. 3D-QSAR 模型构建(Sybyl 软件)
    1.1 小分子构建
    1.2 创建小分子数据库
    1.3 小分子加电荷及能量优化
    1.4 分子活性构象确定及叠合
    1.5 创建 3D-QSAR 模型
    1.6 CoMFA 和 CoMSIA 模型构建
    1.7 测试集验证模型
    1.8 模型参数分析
    1.9 模型等势图分析
    1.10 3D-QSAR 模型指导药物设计
    实例讲解与练习:激酶靶点 Bcr/Abl 抑制剂的构效关系模型构建与活性预测
    分子动力学模拟
  2. 分子动力学简介(GROMACS 软件)
    1.1 分子动力学基本原理 1.2 Linux 系统介绍 1.3 分子动力学软件介绍(Gromacs)
  3. Gromacs 进行分子动力学模拟
    2.1 配体分子的处理 2.2 蛋白结构的处理 2.3 修改蛋白坐标文件 2.4 修改拓扑文件
    2.5 构建盒子并放入溶剂 2.6 平衡系统电荷 2.7 能量最小化 2.8 NVT 平衡 2.9 NPT 平衡
    2.10 产出动力学模拟
  4. 分子动力学结果分析
    3.1 轨迹文件观察 3.2 能量数据作图 3.3 轨迹修正处理 3.4 回旋半径分析 3.5 计算蛋白构象的 RMSD 变化
    3.6 计算原子位置的 RMSF 变化 3.7 蛋白配体构象聚类 3.8 蛋白配体相互作用氢键分析 3.9 蛋白配体相互作用能分析
    实例讲解与练习:
    (1)水中的溶菌酶纯蛋白模拟
    (2)T4 溶菌酶及配体复合物模拟

二:AMBER 分子动力学能量优化与分析、结合自由能计算

一. 分子动力学入门理/论
教学目标:了解本方向内容、理论
基础、研究意义。
1 分子力学简介
1.1 分子力学的基本假设 1.2 分子力学的主要形式
2 分子力场
2.1 分子力场的简介 2.2 分子力场的原理 2.3 分子力场的分类及应用
二. LINUX入门
教学目标:掌握数值计算平台,熟悉计算机语言,能够使用vim编辑器简单编辑文件。
3 LINUX 简介
3.1 用户属组及权限 3.2 目录文件属性 3.3 LINUX基础命令 3.4 LINUX环境变量 3.5 shell常用命令练习
三. AMBER简介及安装
教学目标:了解Amber软件历史发 展,熟悉安装环境,支撑环境编译。
4 AMBER简介和安装
4.1 GCC简介及安装 4.2 Open MPI简介及安装 4.3 AMBER安装运行 4.4 LIUUX操作练习
四. 研究对象模型获取
教学目标:如何确立研究对象,熟悉蛋白数据库的使用,如何对研究对象建模。
5 模型文件的预处理
5.1 模型来源简介 5.2 蛋白文件简介
五. 研究对象模型构建
教学目标:熟悉模型预处理流程, 掌握输入文件的编写,能够独立完成体系动力学之前的准备工作。
6 模型文件的预处理
6.1 蛋白预处理 6.2 小分子预处理 6.3 AMBER力场简介 6.4 拓扑文件、坐标文件简介
6.5 top、crd文件的生成 6.6 tleap模块的使用
案例实践:  HIV-1复合物的预处理
六. 分子动力学模拟
教学目标:分子动力学流程,AMBER软件动力学原则,完成分子动力学模拟的操作练习。
7 能量优化、分子动力学模拟
7.1 能量优化意义以及方法 7.2 模拟温度调节意义及方法 7.3 溶剂模型分类及选择 7.4 动力学模拟输入文件的编写
7.5 运行分子动力学模拟 7.6 输出内容解读 7.7 练习答疑
案例实践:  HIV-1复合体系能量优化、分子动力学模拟
七. 结合自由能计算
教学目标:熟悉结合自由能计算的意义、MMPBSA方法以及流程。
8 焓变计算
8.1 实验数据分析及检索 8.2 MM/PBSA结合自由能计算原理 8.3 GB模型讲解及分类
8.4 焓变输入文件的编写 8.5 焓变结果解读
9 熵变计算
9.1 Nmode计算熵变原理 9.2 熵变输入文件的编写 9.3 熵变结果解读 9.4 实验值与理论值对照分析
案例实践:  HIV-1与抑制剂之间结合自由能计算
八. 可视化软件
教学目标:熟悉可视化软件获取渠道、软件安装以及基本使用,采用可视化软件辅助科研工作。
10 3D可视化分析
10.1 VMD安装和使用 10.2 Pymol 安装和使用
九. 基于分子动力学的轨迹特征获取
教学目标:从动力学模拟出的构象出发,洞悉构象转变,解释实验想象,预测实验结果
11 构象分析
11.1 RMSD分析 11.2 B-Factory 分析 11.3 RMSF分析 11.4 RG分析 11.5 VMD动画展示
11.6 距离角度测量 11.7 溶剂可及表面积(SASA)
十. 基于能量的相互作用机理分析
教学目标:从能量角度出发,分析分子间、残基间、重要基团间相互作用机理,对实验提供理论指导
12 能量分析
12.1 残基分解(相互作用分析) 12.2 丙氨酸扫描(寻找热点残基) 12.3 氢键网络(盐桥,pi-pi共轭等其它相互作用) 12.4 练习答疑
十一. 经典工作复现
教学目标:引导初学者了解本方向中经典工作,复现工作中重要分析手段,加深同学对本方向的理解。
13 经典文献工作复现(请同学在课前自行下载仔细阅读)
13.1 Nanoscale 2020, 12, 7134−7145.
(a) RMSD和2D_RMSD检验模拟的稳定性
(b) 结合自由能的对比与分析
© 热力学积分计算相对结合自由能
(d) 氢键网络分析
(e) 残基分解预测热点氨基酸
13.2 J. Chem. Inf. Model. 2021, 61, 7, 3529–3542
(a) 丙氨酸扫面预测热点氨基酸
(b) 残基接触(contact)分析
© 温度因子分析(
B-facter)分析
(d) 溶剂可及表面积分析
(e) 伞状采样动力学再现解离机制
13.3 练习答疑
在这里插入图片描述

三:薛定谔分子对接、药效团虚拟筛选、3D-QSAR 化合物活性分析

蛋白-配体相互作用

  1. 分子对接基础、原理及对接软件介绍
  2. 分子对接软件(薛定谔) 使用
    2.1 半柔性对接
    2.1.1 小分子配体优化准备 2.1.2 蛋白受体优化及坐标文件准备 2.1.3 蛋白受体格点计算 2.1.4 半柔性对接计算
    2.2 对接结果评价
    2.2.1 晶体结构构象比较 2.2.2 打分角度评价对接结果 2.2.3 构象角度评价对接结果
    2.2.4 最优结合构象选择 2.2.5 已知活性化合物对接结果比较
    实例讲解与练习:Bcr/Abl 靶点抑制剂的分子对接
    柔性对接及基于结构的虚拟筛选
    2.3 诱导契合柔性对接
    2.3.1 小分子配体优化准备 2.3.2 蛋白受体优化及坐标文件准备 2.3.3 蛋白受体格点计算
    2.3.4 柔性对接计算 2.3.5 柔性对接结果评价 2.3.6 半柔性对接与柔性对接比较与选择
  3. 基于结构的虚拟筛选(薛定谔)
    3.1 虚拟筛选定义、流程构建及演示 3.2 靶点蛋白选择 3.3 化合物库获取 3.4 虚拟筛选
    3.5 结果分析(打分值、能量项分解及相互作用)
  4. 共价对接(薛定谔)
    4.1 蛋白结构准备 4.2 小分子结构准备 4.3 共价对接 4.4 共价对接结果分析
    实例讲解与练习:1)Bcr/Abl 靶点抑制剂的虚拟筛选
    2)EGFR 靶点抑制剂共价对接
    基于药效团虚拟筛选
  5. 药效团构建虚拟筛选(薛定谔)及结果分析
    5.1 配体和受体结构准备及优化 5.2 基于多配体共同特征构建药效团 5.3 基于蛋白-配体复合物构建药效团
    5.4 药效团的特征修饰 5.5 药效团的富集分析 5.6 基于药效团的虚拟筛选 5.7 基于药效团虚拟筛选结果分析
    实例讲解与练习: 基于药效团的 Bcr/Abl 抑制剂虚拟筛选
    构效关系模型预测分 子活性
  6. 构效关系模型(3D-QSAR)构建及化合物活性分析
    6.1 构效关系基本理论介绍 6.2 分子数据集准备 6.3 3D-QSAR 模型构建 6.4 3D-QSAR 模型结果分析
    6.5 3D-QSAR 模型预测新化合物活性
    实例讲解与练习: Bcr/Abl 抑制剂 3D-QSAR 构建及分子活性预测

四:AIDD 人工智能(机器学习与深度学习)辅助药物发现

计算机辅助药物分子设计
1.计算机辅助药物设计(CADD)简介
2.CADD 的基本方法
2.1 分子对接 2.2 药效团 2.3 QSAR 和 QSPR 2.4 各类药学研究数据库的介绍
Anaconda3 的安装配置
3.Anaconda3
3.1 Pandas 3.2 NumPy 3.3 RDKit 3.4 scikit-learn 3.5 Pytorch 3.6 Tensorflow 3.7 DeepChem 3.8 XGBoost
AIDD 简介 ——分类和回归任务
1.分类模型的构建与应用
1.1 逻辑回归算法原理
1.2 朴素贝叶斯算法原理
1.3k 最近邻算法原理
1.4 支持向量机算法原理
1.5 随机森林算法原理
1.6 梯度提升算法原理
2. 分子特征介绍
2.1 分子描述符 2.2 分子指纹 2.3 分子图
基于浅层机器学习的药物发现(目标:引导学员自行实现基于其他三种算法如 KNN,SVM,XGBoost 的毒性预测模型,并用于小分子化合物的毒性预测)
3.模型评估方法
3.1 交叉验证 3.2 外部验证 3.3 分类模型的常用评价指标 3.4 混淆矩阵 3.5 准确率 3.6 敏感性 3.7 特异性
4.参数优化与模型选择
4.1 超参数优化 4.2 模型选择的标准
模型实例讲解与练习(文献复现):
 给定数据集为例,基于随机森林算法的 CYPs 抑制剂相关毒性预测模型的构建与使用
基于浅层学习的药物发现 ——回归任务
1.回归模型的构建与应用
2.回归模型的常用评价指标
2.1 MSE 2.2 MAE 2.3 R2
3.模型选择
3.1 超参数优化 3.2 最优模型选择
基于浅层学习分类的虚拟筛选(目标:引导学员自行实现基于其他三种算法的pIC50 值预测模型,并用于小分子化合物 pIC50 值的预测)
模型实例讲解与练习(文献复现):
 以微管蛋白为例,机器学习分类任务在药物发现中的实战作用
 给定数据集为例,基于随机森林算法的 pIC50 值预测模型构建与使用
基于深度学习的药物发现
1.深度学习的发展历程
1.1 深度学习在药物开发中的应用 1.2 DNN 1.3 GCN 1.4 GAT 1.5 KGCN 1.6 FP-GNN
2.深度神经网络的常用框架介绍
2.1 PyTorch 2.2 TensorFlow
3.DEEPCHEM 介绍与使用
模型实例讲解与练习(文献复现):
 DEEPCHEM 集成的机器学习方法和加载使用
使用 DNN,GCN,GAT 等主流深度学习模型进行实操
实例讲解与练习(文献复现):
 给定数据集为例,使用 DNN,GCN,GAT 等主流深度学习模型进行小分子抗乳腺活性预测
 乳腺预测的基本思路,逻辑和课题设计
在这里插入图片描述

以上内容可以作为学习的参考

  • 0
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值