Rossmann是德国最大的日化用品超市,成立于1972年。在医药零售行业,目前Rossmann已经在7个欧洲国家拥有超过3000家药店。目前,Rossmann店铺经理的任务是提前六周预测其日销量。显然,商店销售受到诸多因素的影响,比如促销、竞争、假日、季节性和地点等等。 成千上万的个人经理根据各自店铺的情况预测销售量,结果的准确性可能会有很大的变化。
可靠的销售预测使商店经理能够创建有效的员工时间表,从而提高生产力和动力,比如更好的调整供应链和合理的促销策略与竞争策略,具有重要的实用价值与战略意义。 如果可以帮助Rossmann创建一个强大的预测模型,将帮助仓库管理人员专注于对他们最重要的内容:客户和团队。 因此,在这个项目中,Rossmann希望建立机器学习模型,通过给出的数据来预测德国各地1115家店铺的6周销量。
主要有有以下步骤:
Step 1: 导入数据
Step 2: 数据研究
Step 3: 缺失值处理
Step 4: 特征提取
Step 5: 基准模型与测试
Step 6: XGBoost
数据库包含
['store.csv', 'train.csv', '