线性代数【七】特征值、特征向量与相似矩阵、相似对角化

本节为线性代数复习笔记的第七部分,主要包括:特征值、特征向量与相似矩阵、相似对角化。

1. 特征值与特征向量

  定义:设A是n阶方阵, λ \lambda λ是一个数,若存在n维非零列向量 ξ \xi ξ,使得 A ξ = λ ξ A\xi=\lambda \xi Aξ=λξ,则称 λ \lambda λ是A的特征值, ξ \xi ξ是A对应于特征值 λ \lambda λ的特征向量。
  由于 A ξ = λ ξ A\xi=\lambda \xi Aξ=λξ可得 ( λ E − A ) ξ = 0 (\lambda E-A)\xi=0 (λEA)ξ=0,因列向量 ξ \xi ξ非零,也就是说齐次线性方程组有非零解,即矩阵 ( λ E − A ) (\lambda E-A) (λEA)中的所有列向量线性相关,也就是行列式为0,即 ∣ λ E − A ∣ = 0 |\lambda E-A|=0 λEA=0,这个等式称为特征方程。
   e g . eg. eg. 求 方 阵 A = [ 0 0 1 0 1 0 1 0 0 ] 的 特 征 值 和 特 征 向 量 求方阵A=\left[\begin{matrix}0&0&1\\0&1&0\\1&0&0\end{matrix}\right]的特征值和特征向量 A=001010100.
   解 特 征 方 程 : ∣ λ E − A ∣ = ∣ λ 0 − 1 0 λ − 1 0 − 1 0 λ ∣ 解特征方程:|\lambda E-A|=\left|\begin{matrix}\lambda&0&-1\\0&\lambda-1&0\\-1&0&\lambda\end{matrix}\right| λEA=λ010λ1010λ
= ( λ − 1 ) ( λ 2 − 1 ) = ( λ − 1 ) 2 ( λ + 1 ) = 0 =(\lambda-1)(\lambda^2-1)=(\lambda-1)^2(\lambda+1)=0 =(λ1)(λ21)=(λ1)2(λ+1)=0
   解 得 : λ 1 = λ 2 = 1 , λ 3 = − 1 解得:\lambda_1=\lambda_2=1,\lambda_3=-1 λ1=λ2=1λ3=1
   当 λ 1 = λ 2 = 1 , 则 ( E − A ) x = 0 , 即 : 当\lambda_1=\lambda_2=1,则(E-A)x=0,即: λ1=λ2=1(EA)x=0

[ 1 0 − 1 0 0 0 − 1 0 1 ] [ x 1 x 2 x 3 ] = [ 0 0 0 ] \left[\begin{matrix}1&0&-1\\0&0&0\\-1&0&1\end{matrix}\right]\left[\begin{matrix}x_1\\x_2\\x_3\end{matrix}\right]=\left[\begin{matrix}0\\0\\0\end{matrix}\right] 101000101x1x2x3=000

   之 后 就 是 化 系 数 矩 阵 为 阶 梯 矩 阵 的 基 础 解 系 之后就是化系数矩阵为阶梯矩阵的基础解系
ξ 1 = [ 1 , 0 , 1 ] T , ξ 2 = [ 0 , 1 , 0 ] T \xi_1=[1,0,1]^T,\xi_2=[0,1,0]^T ξ1=[1,0,1]T,ξ2=[0,1,0]T 则 k 1 ξ 1 + k 2 ξ 2 是 对 应 于 则k_1\xi_1+k_2\xi_2是对应于 k1ξ1+k2ξ2
λ 1 = λ 2 = 1 的 全 部 特 征 量 。 同 理 λ 3 = − 1 。 \lambda_1=\lambda_2=1的全部特征量。同理\lambda_3=-1。 λ1=λ2=1λ3=1

2. 相似矩阵与相似对角化

  相似矩阵即:若 P − 1 A P = B 则 A ∼ B , P^{-1}AP=B则A\sim B, P1AP=BAB相似矩阵的秩相等、行列式值相等、迹数相等、拥有同样的特征值)尽管相应的特征向量一般不同)、同样的特征多项式、拥有同样的初等因子。
  更加加详细的我们看相似对角化的概念:若存在可逆矩阵P(行列式不为0,列向量线性无关),使得 P − 1 A P = Λ P^{-1}AP=\Lambda P1AP=Λ(对角矩阵),则称A可以相似对角化,记为 A ∼ Λ , 称 Λ A\sim \Lambda,称\Lambda AΛΛ为A的相似标准型。
  若 P − 1 A P = Λ , 即 A P = P Λ , 即 A ( ξ 1 , ξ 2 , . . . , ξ n ) P^{-1}AP=\Lambda,即AP=P\Lambda,即A(\xi_1,\xi_2,...,\xi_n) P1AP=ΛAP=PΛA(ξ1,ξ2,...,ξn) = ( ξ 1 , ξ 2 , . . . , ξ n ) ( λ 1 . . . λ n ) , 即 A ξ i = λ i ξ i , 也 就 是 特 征 值 和 特 征 向 量 =(\xi_1,\xi_2,...,\xi_n)\left(\begin{matrix}\lambda_1&&\\&...&\\&&\lambda_n\end{matrix}\right),即A\xi_i=\lambda_i\xi_i,也就是特征值和特征向量 =(ξ1,ξ2,...,ξn)λ1...λnAξi=λiξi


欢迎扫描二维码关注微信公众号 深度学习与数学   [每天获取免费的大数据、AI等相关的学习资源、经典和最新的深度学习相关的论文研读,算法和其他互联网技能的学习,概率论、线性代数等高等数学知识的回顾]
在这里插入图片描述

  • 1
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值