割平面算法的基本思想

割平面算法通过判断松弛问题的解性质,若非整数,添加割平面条件来减小问题空间,直至找到整数解或证明原问题无解。关键步骤包括检查、约束添加和区域割除。
摘要由CSDN通过智能技术生成

割平面算法的基本思想

(1)如果松弛问题P^{0}无解,则P无解;

(2)如果(P^{0})的最优解为整数向量,则也是(P)的最优解;

(3)如果(P^{0})的解含有非整数分量,则对(P^{0})增加割平面条件:即对(P^{0})增加一个线性约束,将(P^{0})的可行区域割掉一块,使得非整数解恰好在割掉的一块中,但又没有割掉原问题(P)的可行解,得到问题(P^{1}),重复上述过程。

  割平面法基本步骤 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值