割平面算法的基本思想
(1)如果松弛问题无解,则P无解;
(2)如果()的最优解为整数向量,则也是(P)的最优解;
(3)如果()的解含有非整数分量,则对()增加割平面条件:即对()增加一个线性约束,将()的可行区域割掉一块,使得非整数解恰好在割掉的一块中,但又没有割掉原问题(P)的可行解,得到问题(),重复上述过程。
割平面法基本步骤
(1)如果松弛问题无解,则P无解;
(2)如果()的最优解为整数向量,则也是(P)的最优解;
(3)如果()的解含有非整数分量,则对()增加割平面条件:即对()增加一个线性约束,将()的可行区域割掉一块,使得非整数解恰好在割掉的一块中,但又没有割掉原问题(P)的可行解,得到问题(),重复上述过程。
割平面法基本步骤