Labelme 是一个开源的图像标注工具,主要用于为计算机视觉任务(如目标检测、语义分割、实例分割、关键点检测等)创建带标签的数据集。它最初由 MIT 的计算机科学与人工智能实验室(CSAIL)开发,广泛应用于人工智能和机器学习项目中。
Labelme 的主要功能包括:
-
多边形标注(Polygon)
用户可以用鼠标在图像上点击多个点,绘制任意形状的多边形区域,常用于精确标注人脸轮廓、物体边界等。 -
矩形框标注(Bounding Box)
用于目标检测任务,快速框出图像中的人脸、车辆等目标。 -
点标注(Points / Keypoints)
可用于标注人脸关键点(如眼睛、鼻子、嘴角等),适用于人脸对齐或姿态估计任务。 -
线段和折线标注(Line / Polyline)
适用于道路、边缘等线性结构的标注。 -
语义/实例分割支持
通过多边形标注生成像素级掩码(mask),可用于训练分割模型。 -
JSON 格式输出
每张图像的标注结果会保存为一个.json文件,包含标注形状、类别标签、坐标等信息,便于后续转换为 COCO、VOC 或 YOLO 等格式。
在人脸标注中的典型用途:
- 人脸检测:用矩形框标注每张人脸的位置。
- 人脸分割:用多边形精细勾勒人脸轮廓,用于分割任务。
- 人脸关键点标注:标注眼睛、眉毛、鼻子、嘴巴等关键点,用于人脸识别、表情分析或3D人脸重建。
总结:
Labelme 是一个灵活、轻量、开源的图像标注工具,特别适合需要精细标注(如人脸轮廓或多关键点)的人工智能训练任务。 它生成的标注数据可直接用于训练深度学习模型,是构建高质量人脸数据集的重要工具之一。
2万+

被折叠的 条评论
为什么被折叠?



