风险风控-逻辑回归理论基础

本文介绍了逻辑回归作为广义线性模型的一种,它通过链接函数将特征与目标变量的关系建模为概率,适用于二分类问题。最大似然估计用于求解模型参数,保证预测接近实际观察结果。逻辑回归的输出是概率值,由对数几率函数和逻辑斯蒂函数转化得到。在应用中,逻辑回归常用于解决分类问题,如预测客户购买行为或信用违约风险,需要满足特定假设条件。
摘要由CSDN通过智能技术生成

逻辑回归一般都应用于传统的建模方案,因其模型含义易解释,容易推广上线而得到大家的青睐

逻辑回归于广义线性模型:

逻辑回归是广义线性模型(Generalized Linear Models,GLM)的一种特殊形式。广义线性模型是线性回归模型的推广,它不强行改变数据的自然度量,允许数据具有非线性和非恒定方差结构。具体来说,GLM建立了响应变量的数学期望值与线性组合的预测变量之间的关系,通过链接函数将这两者联系起来。

逻辑回归的核心是使用对数几率函数(logit function)作为链接函数,将特征和目标变量之间的关系建模为概率。这使得逻辑回归不仅可以处理二分类问题,还能够处理多分类问题。在求解逻辑回归模型参数时,常用的方法是极大似然估计,该方法通过最大化似然函数来估计模型参数,使得模型对训练数据的预测尽可能接近实际观察到的结果。

逻辑回归Y变量取值和预测概率P取值范围:

在逻辑回归模型中,Y变量是二分类变量,其取值为0或1。这种取值方式常用于代表两种类别,例如在预测模型中,y=1可能表示某种情况的存在(如阳性、发病、有效等),而y=0则表示这种情况的不存在(如阴性、未发病、无效等)。

逻辑回归中的log-odds ratio公式是:logit(p)=ln(\frac{p}{1-p})=\alpha +\beta x,其中p是事件发生的概率,x是特征的线性函数。log-odds ratio是指事件发生的概率与不发生的概率之比的自然对数。这个公式可以用于计算逻辑回归模型中每个特征的系数 。

在逻辑回归模型中,链接函数起到了将线性回归的输出转化到[0,1]区间的作用,对数几率函数(logit function)就是这样一个链接函数。逻辑回归的预测结果是一个概率值,这个概率值是通过逻辑斯蒂函数(logistic function)计算得到的。

P(y=1|x) = 1 / (1 + exp(-(\alpha +\beta x)))

最大似然估计MLE:

在逻辑回归中,最大似然估计是一种优化策略,其目标是寻找一组参数,可以最大化观察到的数据出现的概率。具体来说,这意味着我们希望找到一组参数,使得在给定这组参数的情况下,我们所预测的样本出现的概率是最高的。

为了更形象地理解这个过程,我们可以想象一个场景:你有一堆广告投入和销售量的数据,你想通过这些数据来预测广告投入和销售量之间的关系。在这个过程中,最大似然估计就相当于你用这些数据作为工具,去“尽可能地找出”广告投入和销售量之间的最佳关系,也就是求得一组最佳的参数。

逻辑回归主要应用于解决分类问题,例如判断一个客户是否会购买某个商品,或者一个借款人是否会违约。在这个过程中,我们得到的计算结果通常是0-1之间的连续数字,这些数字代表了事件发生的可能性或概率。而逻辑回归的目标就是通过寻找一组最佳的参数,使我们预测的可能性尽可能接近真实情况。

在使用逻辑回归构建评分模型时,需要满足以下假设条件:

1. 因变量必须为分类变量,并且至少有一个自变量。这些自变量可以是连续的或者是分类的。

2. 数据服从伯努利分布,也就是说,样本的结果只有两种可能,例如0和1,正例和负例。同时,这两种概率的和为1。

3. 模型的输出是样本为正例的概率。这意味着我们需要将线性回归的输出通过sigmoid函数转换为概率值。

4. 观测不到的混杂因素是恒定的,这被称为平行线检验假设。也就是说,我们假设在给定X的条件下,Y的期望不会随着时间改变。

5. 误差项必须符合独立同分布,这意味着每一个误差项都与其他误差项无关,且都服从同一分布。

6. 没有多重共线性问题,也就是自变量之间不存在高度相关性。如果存在高度相关性,那么这可能会导致模型过拟合。

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

田晖扬

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值