MODNET论文解读

特点:trimap-free、人像matte,速度快

因为目标定义明确,才能trimap-free。
本质还是图片matte

结构

在这里插入图片描述
卷积神经网络,分为3个模块,小分辨率目标分割、细节预测、alpha预测
所以loss也是3个加权
在这里插入图片描述
分割gt通过alpha下采样+blur获取,细节只关注边界loss。

domain适应

通过在其他数据上自监督的训练。加了两个一致性loss。让模型的3个输出彼此之间的边界信息对齐。(因为前景的人是固定的,换了domain,也就是背景,一般就是边界学习的不太好,所以要保证边界对齐),细节loss加了一个与原模型做对齐。
在这里插入图片描述

视频后处理

one-frame-delay。
如果前一帧与后一帧相似,与本帧不相似,则说明本帧闪烁,取前后帧的均值作为本帧的结果。
在这里插入图片描述

局限

  • trimap-free的方法,效果不错,但是加入trimap信息,还是可以大幅提升modnet的效果
  • 本方法未引入时空信息,所以对于运动比较快的,表现不好。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

yang_daxia

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值