最新语音识别词错误率WER汇总

本文汇总了不同算法在LibriSpeech、WSJ等语料库上的语音识别词错误率(WER),并提供了详细的对比分析,是了解语音识别技术现状的宝贵资源。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目前语音识别的词错误率(WER)不同算法,不同语料是多少?本文结果来源于github一个大神的汇总。

包括LibriSpeech语料库,WSJ, Rich Transcriptions,Hub5'00 Evaluation (Switchboard / CallHome),Fisher (RT03S FSH)等。详情可以去原地址查看。原文还包含AI各个方向应用的汇总综述等等。干货很多。

原地址:https://github.com/gopala-kr/a-week-in-wild-ai/tree/40d15ef1d7874f2752d6dd0674a4c5fd3d62e222/03-speech-processing#language-modelling

LibriSpeech语料库

WSJ语料库

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

yang_daxia

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值