随机变量均值、方差和期望

假设一个事件发生概率为  p = 0.2

经过k次实验 第一次发生的概率为  p\left ( X = k \right ) = \left ( 1 - p \right )^{k-1} * p

这个概率质量函数称为几何分布,在一系列独立的伯努利试验中,需要进行多少次试验才能获得第一次成功的情况。

推广来看,如果我们希望n次实验中,有k次发生,对于离散变量 我们得到二项分布概率质量函数

f(k,n,p) = C(n,k) * p^{k} * (1-p)^{n-k}

几何分布期望和方差:

E[X] = \frac{1}{p}, Var[X] = \frac{1-p}{p^{2}}

几何分布期望 E[x] = \sum_{k=1}^{\infty} k*(1-p)^{k-1} * p    ,令 q = (1-p)       

k * (1-p)^{k-1} = \frac{\mathrm{d} }{\mathrm{d} q}q^{k} ,利用求导和求和的可交换性,E[X] = p * \sum_{k=1}^{\infty } \frac{\mathrm{d} }{\mathrm{d} q} q^{k} = p* \frac{\mathrm{d} }{\mathrm{d} q}\left [ \sum_{k=0}^{\infty } q^{k} \right ] = p *\frac{\mathrm{d} }{\mathrm{d} q}(\frac{1-q^{\infty }}{1-q}) = p * \frac{1}{\left (1-q \right )^{2}} = \frac{1}{p}

如果p = 0.2 则 第一次发生事件的平均实验次数为5次

二项分布期望和方差:

E[X] = np  , Var[X] = np(1-p)

假设进行一次实验,发生概率为p,未发生为1-p,期望= 1*p + 0*(1-p) = p  n次实验则为np

方差 = n*p*(1-p) 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值