图像二分类,多分类和多标签分类的区别和注意事项
1. 二分类
分类任务是两个类别,每个样本属于两个类别中的一个,标签为0或者1,比如猫狗二分类
输出层:只有一个单元,采用sigmoid函数(将输出转换为0-1之间的概率分布)
损失函数:2分类交叉熵损失
标签:每个样本的标签是一个标量,0或者1
2. 多分类
分类任务有n个类别,每个样本属于n个类别中的一个,且每个样本有且只有一个标签,比如新闻题材分类:政治、经济、文化等
输出层:进行n分类时,设置输出层的单元数为n,采用softmax函数
损失函数:多分类交叉熵损失函数
标签:把标签转换为one-hot向量,每个样本的标签是一个n维向量,其所属类别位置是1,其余位置是0
3. 多标签分类
分类任务有n个类别,每个样本属于n个类别中的若干个,每个样本有若干个标签,比如一段新闻可以同时属于政治、经济等标签
输出层:采用sigmoid作为激活函数
损失函数:使用二进制交叉熵损失函数作为损失函数
标签:把标签转换为multi-hot向量,每个样本的标签是一个n维向量,其所属标签位置是1,其余位置是0
https://zhuanlan.zhihu.com/p/98322026