yolo学习之自适应anchor

本文主要探讨YOLOv5中自适应anchor的工作原理,重点在于check_anchors()内的metric()函数,理解anchor_t(即阈值)如何界定anchor与gt label的匹配程度。文中详细解释了计算过程中广播机制的应用,以及如何通过gt的宽高比与anchor的宽高比判断匹配度。同时,文章强调了在不同数据集上训练时,预估数据集的最大宽高比以设置合适的anchor_t的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

曙光_deeplove

你的鼓励是我努力的最大源泉

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值