PCA主成分分析教程(origin分析&绘制,无须R语言)

本文提供了一步步的PCA主成分分析教程,以Origin软件为平台,利用微生物family级别丰度数据进行示例。通过安装并使用PrincipalComponentsAnalysis插件,展示了如何进行相关设置,包括选择相关性矩阵和设定主成分数量。最终,教程指导读者如何通过Origin生成PCA图,用于揭示不同样本组间的差异性。虽然后期修正部分未作演示,但强调Origin的易用性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

PCA主成分分析教程(origin分析&绘制,无须R语言)

相关性分析,相关的介绍内容大家自行搜索资料即可,这里不给大家过多阐述。

案例解读

PCA作为常见的一种聚类分析方法,在很多SCI论文中均有出现,如下:

这里也不给大家解读了,总而言之就是为了说明蓝色组、红色组和蓝色组三组之间的差异性。

绘制教程

导入数据

这里给大家使用一组微生物在family级别的丰度数据做为示例数据,具体如下图。XB、XS、ZB、ZS分别表示不同地点的样本,其余则为注释到的微生物名称以及丰度数据。

XB1、XB2和XB3表示三个平行样,由于origin中app有严格的使用规则,这里大家仿照这样放置数据即可,第一列数据是为了方便对不同的样本进行分类标识。

安装Principal Components Analysis插件

插件已经上传博主主页资源,安装方案参考https://blog.csdn.net/yangqijia1/article/details/120738528?spm=1001.2014.3001.5502

使用插件进行分析

1、点击Principal Components Analysis APP

在这里插入图片描述

2、进行相关设置

上面这张图中没有给大家进行数据的选择了,大家自行选择即可。

在这里插入图片描述
这里一般选择相关性矩阵,展示的主成分组数为3个以上。
在这里插入图片描述
在这里插入图片描述
到这里就设置完成咯,点击ok即可出图。

出图结果

在这里插入图片描述
在这里插入图片描述

后期修正

后期修正就不演示了,origin的原则就是哪里不会点哪里。完结!撒花!

Origin是一款功能强大的数据分析和图形绘制软件,它提供了许多插件来帮助用户更好地进行数据分析和可视化。其中之一的主成分分析插件PCA app)可以帮助用户进行主成分分析,并提供了方便的功能和工具。 主成分分析是一种常用的统计分析方法,用于降维和变量选择。它通过线性变换将原始数据集转换为一组新的变量,这些新变量是原始变量的线性组合,且彼此间无相关性。通过主成分分析,我们可以去除数据中的冗余信息,提取重要的特征,并让数据更易于解释。 在OriginPCA app中,用户可以轻松地导入数据集,并选择需要进行主成分分析的变量。该插件会自动进行数据标准化,以确保每个变量在相同的尺度上进行比较。用户还可以选择保留的主成分数量,并查看结果的变量贡献度、解释方差等信息。 此外,PCA app还提供了可视化工具,用于展示主成分分析的结果。用户可以查看得分图,以了解每个样本在不同主成分上的投影,帮助识别和比较不同样本之间的差异。用户还可以绘制负荷图,以显示原始变量与主成分之间的关系,帮助解释变量之间的相似性和差异性。 总的来说,Origin中的PCA app为用户提供了一种简便且强大的方法来进行主成分分析。它不仅能够帮助用户有效地处理和分析数据,还可以通过可视化工具提供直观的结果展示,使用户能够更好地理解数据的特征和特点。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

杨杨杨杨杨齐家

孩子想喝冰红茶/(ㄒoㄒ)/~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值