PCA主成分分析教程(origin分析&绘制,无须R语言)

本文提供了一步步的PCA主成分分析教程,以Origin软件为平台,利用微生物family级别丰度数据进行示例。通过安装并使用PrincipalComponentsAnalysis插件,展示了如何进行相关设置,包括选择相关性矩阵和设定主成分数量。最终,教程指导读者如何通过Origin生成PCA图,用于揭示不同样本组间的差异性。虽然后期修正部分未作演示,但强调Origin的易用性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

PCA主成分分析教程(origin分析&绘制,无须R语言)

相关性分析,相关的介绍内容大家自行搜索资料即可,这里不给大家过多阐述。

案例解读

PCA作为常见的一种聚类分析方法,在很多SCI论文中均有出现,如下:

这里也不给大家解读了,总而言之就是为了说明蓝色组、红色组和蓝色组三组之间的差异性。

绘制教程

导入数据

这里给大家使用一组微生物在family级别的丰度数据做为示例数据,具体如下图。XB、XS、ZB、ZS分别表示不同地点的样本,其余则为注释到的微生物名称以及丰度数据。

XB1、XB2和XB3表示三个平行样,由于origin中app有严格的使用规则,这里大家仿照这样放置数据即可,第一列数据是为了方便对不同的样本进行分类标识。

安装Principal Components Analysis插件

插件已经上传博主主页资源,安装方案参考https://blog.csdn.net/yangqijia1/article/details/120738528?spm=1001.2014.3001.5502

使用插件进行分析

1、点击Principal Components Analysis APP

在这里插入图片描述

2、进行相关设置

上面这张图中没有给大家进行数据的选择了,大家自行选择即可。

在这里插入图片描述
这里一般选择相关性矩阵,展示的主成分组数为3个以上。
在这里插入图片描述
在这里插入图片描述
到这里就设置完成咯,点击ok即可出图。

出图结果

在这里插入图片描述
在这里插入图片描述

后期修正

后期修正就不演示了,origin的原则就是哪里不会点哪里。完结!撒花!

### Origin PCA 插件介绍 OriginPCA插件用于执行主成分分析(PCA),这是一种统计方法,通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量[^1]。 ### 下载与安装 为了下载并安装Origin PCA插件,在官方网站或可信资源网站上找到适用于版本的插件文件。通常是一个ZIP压缩包或者EXE可执行文件。对于ZIP格式,解压到指定目录,并按照官方文档指示完成加载过程;如果是EXE,则运行安装程序遵循向导提示操作即可[^2]。 ### 使用教程 #### 启动插件 启动OriginPro软件之后,确保已正确加载PCA插件。可以通过菜单栏中的`Apps`选项来验证这一点,如果看到“Principal Component Analysis”条目则表示成功加载[^3]。 ```python import numpy as np from sklearn.decomposition import PCA # 假设X是已经导入的数据集矩阵形式 pca = PCA(n_components=2) # 创建一个PCA对象, 设置降维后的维度数 principalComponents = pca.fit_transform(X) # 对数据进行拟合并且应用降维 ``` 这段Python代码展示了如何利用sklearn库来进行简单的PCA计算作为对比学习材料[^4]。(注意:这并不是直接在Origin环境中使用的命令) #### 导入数据 点击工具栏上的图标打开对话框,选择要分析的工作表或范围内的列。支持多种类型的输入源,包括但不限于Excel表格、CSV文本文件等外部数据源[^5]。 #### 参数设置 配置参数如标准化与否(`Standardize Variables`)以及输出项的选择(得分图、负载图)。这些设定会显著影响最终的结果展示方式和解释角度[^6]。 #### 执行分析 确认所有必要的选项都已被适当调整后,单击OK按钮开始处理。完成后将在工作区内自动生成新的图形窗口显示结果可视化图表[^7]。 #### 结果解读 主要关注特征值(Eigenvalue)、方差贡献率(Variance Proportion)及累积百分比(Cumulative %)三项指标评估模型的有效性和代表性。同时观察得分图(Score Plot)了解样本间的相对位置关系;查看负荷图(Loadings Plot)识别哪些原始变量对新构建出来的主成分具有较大影响力[^8]。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

杨杨杨杨杨齐家

孩子想喝冰红茶/(ㄒoㄒ)/~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值