Automatic Recovery of the Atmospheric Light in Hazy Images论文阅读

1. 论文的研究目标与实际意义

1.1 研究目标

论文旨在解决单幅雾图中大气光向量(Atmospheric Light Vector)的自动估计问题。传统方法依赖用户输入或基于灰度世界假设等易错假设,而本文提出了一种全自动方法,分两阶段恢复大气光的方向( A ^ = A / ∥ A ∥ \hat{A} = A/\|A\| A^=A/∥A)和幅值( ∥ A ∥ \|A\| A),以解决以下问题:

  1. 方向估计:通过局部图像块中传输率和表面反照率恒定的假设,在RGB空间中建模像素分布;
  2. 幅值估计:通过全局统计特性(最亮像素强度与传输率无关性),消除幅值误差导致的亮度偏差。

1.2 实际问题与产业意义

大气光估计不准确会导致去雾结果出现颜色失真和亮度偏差(如图1所示):

Fig.1. Dehazed images obtained using different atmospheric light vectors

应用价值

  • 自动驾驶:提升雾天环境下视觉感知的稳定性;
  • 安防监控:减少去雾算法因人工干预导致的误检;
  • 遥感成像:提高卫星图像在恶劣天气下的地物识别精度。

2. 论文的创新方法、模型与公式

2.1 方法框架

论文提出两阶段方法:方向估计(Orientation Estimation)和幅值估计(Magnitude Estimation),核心流程如图2所示:

Fig.2. Pixels from two patches in RGB space
两阶段分别基于局部和全局统计特性。


2.1.1 方向估计(Orientation Estimation)

核心假设:局部图像块中传输率 t ( x ) t(x) t(x)和表面反照率 J ( x ) J(x) J(x)近似恒定。
简化的大气散射模型
对于局部块 Ω \Omega Ω,假设 t ( x ) = t t(x)=t t(x)=t J ( x ) = J J(x)=J J(x)=J,则模型(1)退化为:
I ( x ) = t J + ( 1 − t ) A ∀ x ∈ Ω ( 1 ) I(x) = tJ + (1-t)A \quad \forall x \in \Omega \qquad (1) I(x)=tJ+(1t)AxΩ(1)
在RGB空间中,像素分布形成一条直线,方向由 A ^ \hat{A} A^决定。
几何推导
将像素值 I ( x ) I(x) I(x)投影到RGB空间,通过主成分分析(PCA)提取直线方向,多个块的直线交点即为 A ^ \hat{A} A^
公式推导
设两个局部块 Ω 1 \Omega_1 Ω1</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

青铜锁00

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值