R语言 人工神经网络(nnet包)

数据

威斯康乳腺癌数据集由699个样本和11个特征组成,第一列为Sample code number (id number),最后一列为Class: (2是良性, 4是恶性),是需要预测的变量。其余几个特征的大小均介于1-10之间。数据可以在UCI的网站上得到。

data <- read.csv("breast-cancer-wisconsin.data")
str(data)
levels(data[,11]) <- c(1,2)
boxplot(data[,-1])

boxplot of descriptors

聚类

kmeans()hclust()做聚类分析,主要目的是看看数据能不能被分为两类:

# 计算距离矩阵
df <- data[-c(1,11)] #去掉第一列的id number和最后一列
df.dist<-dist(df)
# 绘制散点图
plot(cmdscale(df.dist))

在这里插入图片描述

k-means

kcl <- kmeans(df, centers = 2)
table(kcl$cluster)
plot(cmdscale(df.dist), 
     col = kcl$cluster, 
     # 聚类预测的类别用不同的形状表示
     pch = as.numeric(levels(data[,11]))) 
     # 真实的类别用不同颜色表示

在这里插入图片描述

hclust

hcl <- hclust(df.dist)
plot(hcl)
hcutree <- cutree(hcl, k = 2)
table(hcutree)
plot(cmdscale(df.dist), 
     col = hcutree, 
     pch = as.numeric(levels(data[,11])))

nnet()函数建立模型

训练集和测试集

随机将数据集分为训练集和测试集,比例为7:3

train <- sample(nrow(data), 0.7*nrow(data))
data.train <- data[train,-1]
data.test<-data[-train,-1]

建立神经网络模型:

nnet()函数只能建立单隐藏层神经网络,size参数可以确定隐藏层的节点数量,maxit控制迭代次数。在这里我们暂时分别设为4和200,在后面的模型评估中我们会进一步确定这两个超参数的大小。

library(nnet)

nn.output <- matrix(0,nrow(data.train),2)
nn.output[which(data.train[,10]==1),1] <- 1
nn.output[which(data.train[,10]==1),2] <- 0
nn.output[which(data.train[,10]==2),1] <- 0
nn.output[which(data.train[,10]==2),2] <- 2
# 或者 nn.output = class.ind(data.train[,10])

model <- nnet(data.train[,-10], 
              nn.output, 
              size = 4, softmax=TRUE, maxit=200, )
summary(model)
# weights:  50
initial  value 466.144512 
iter  10 value 125.847663
iter  20 value 52.835144
iter  30 value 37.154291
iter  40 value 32.582990
iter  50 value 24.168803
iter  60 value 22.890567
iter  70 value 22.802388
iter  80 value 22.802011
iter  90 value 22.801953
iter 100 value 22.801869
final  value 22.801868 
converged
a 9-4-2 network with 50 weights
options were - softmax modelling 
  b->h1  i1->h1  i2->h1  i3->h1  i4->h1  i5->h1 
 293.24   92.76  -67.92   31.32   69.96  -13.00 
 i6->h1  i7->h1  i8->h1  i9->h1 
-141.57  -80.53  -53.78 -120.86 
  b->h2  i1->h2  i2->h2  i3->h2  i4->h2  i5->h2 
1046.31  -93.73  -59.34  -60.35  -40.37   31.52 
 i6->h2  i7->h2  i8->h2  i9->h2 
-117.63   32.67   -7.86  -54.05 
  b->h3  i1->h3  i2->h3  i3->h3  i4->h3  i5->h3 
-607.51   40.55  -93.22   25.86   29.17   45.55 
 i6->h3  i7->h3  i8->h3  i9->h3 
 -20.59  135.62   28.40  216.72 
  b->h4  i1->h4  i2->h4  i3->h4  i4->h4  i5->h4 
 404.67  544.41  230.22  161.05   93.63  500.41 
 i6->h4  i7->h4  i8->h4  i9->h4 
  77.77  522.08  -19.89  398.93 
  b->o1  h1->o1  h2->o1  h3->o1  h4->o1 
-244.03    0.95  232.22 -228.89  470.29 
  b->o2  h1->o2  h2->o2  h3->o2  h4->o2 
 243.56   -1.94 -231.70  228.08 -469.58 

模型评估

根据选择的不同超参数评估测试误差:使用不同的超参数建立多个不同的模型,评估并选择其中最优的模型。真实值与学习器预测的结果的差值称为“误差”,在训练集上的误差叫“训练误差”或“经验误差”,在新样本上的叫“泛化误差”,在测试集上的叫“测试误差”,我们使用测试误差作为泛化误差的近似。

可以使用循环,通过改变某参数值,建立多个模型;再针对每一个模型,计算测试误差,然后找到测试误差最小的模型。例如:迭代次数从1到500,每次增加10,建立50个模型,计算每个模型的测试误差,绘制“迭代次数-测试误差”图。

这里我们用k折交叉验证来评估模型。

k-fold Cross-validation

将数据分层采样(即按照需要预测的类别的比例来抽样),分成k个子集,选取其中k-1个子集合并成train set,第k个为test set,进行k次训练和测试,最后取这k次测试的结果的均值。

将数据集划分为k个子集也有多种划分方法,为减小因样本划分不同而导致差别,通常进行p次划分,例如10次10折交叉验证(共100次)。

# 将数据集划分为大小相近的k个子集
cvsamp <- function(k, datasize){
  cvlist <- list()
  subsetSize <- datasize/k
  datarow <- 1:datasize
  for (i in 1:k-2) {
    group <- sample(datarow, subsetSize)
    cvlist <- append(cvlist, list(group))
    datarow <- setdiff(datarow, group)
  }
  cvlist <- append(cvlist, list(datarow))
  cvlist <- cvlist[-length(cvlist)]
}

这k个子集的序号分别作为列表储存在cvlist中,结果如下:

k <- 10
cvlist <- cvsamp(k = k,datasize = nrow(data.train))
cvlist
[[1]]
 [1]  99  63 422 408 134  35 409 145  20 464 313 489
[13] 105 369 336 230 358  49 112 272  84 427 269 344
[25]  21 406 213 115 423 323 443 360 411 364 479 400
[37] 240 452 198 425 137  15   4 201 450 138 340  88

[[2]]
 [1] 236 393 109 118 172  57 383 315 260 428  16 355
[13]  53 273 245 270 206 224 275 174  68 317  67 305
[25] 371 385 353 159 365  18 434 215 160  46 153   7
[37]  51   8  86  14 304 354 319 120 121 488 462  69

[[3]]
 [1] 222 368 226 254 314 181 311  97 414  82 401 394
[13] 343 271 307  43 250 281 283 324 308 144 458 439
[25] 436 302 186  72 430 257 293  56 130 435 375 114
[37] 438 234 381 296 165  22 471 142 190 338 298  28

[[4]]
 [1] 238 413 194 167  47 188  33  34  40 362  10 472
[13] 207  23 278 276 162 126 280 239 178 419  62 299
[25] 171 325 455 264 465 279 456 111 316 391 108 104
[37] 204  70 485  60 248 149 367  64 321 141 377  85

[[5]]
 [1]  96 457 370  45  13 256  11  98 348 255 468 331
[13] 214 146 119 217 129 197 442 378   9   5 297 132
[25] 482 487  58 290 330 163 420 208 263  95 225 447
[37] 417 396 320 259  12 453 231 345 484 136 220 335

[[6]]
 [1] 481  93 249 125  52 122 346  61  54  24 152  38
[13]  32 128 161  76 454  26 389  48 110 185 486  66
[25] 351 350 262 285  37 342 150 282 328  90 143 327
[37] 374 173 258 407  19 356 310  55 192 267 177 372

[[7]]
 [1] 449 251 241  36 247 133   3 157 116 196 384 349
[13]  27  77 373  39 469 292 405 295 433 135 200 476
[25] 440 155  78 451 480 100 287 470 463 156 113  92
[37]   6 403 347 398  80 286 223 170  75 306 326 189

[[8]]
 [1] 366  94 252 380 421 246 474 219 337 341 228 397
[13] 300 426  83 333 148  89 106 402 253  81 101 312
[25] 117 131 233 473 266 205 291 218 277 195 475 329
[37] 103 191 477  59 301 154 102 180   2 182 166 227

[[9]]
 [1]  44 139 444 210 216 229 437  65 445 124  30 418
[13] 183 382 140 461 415 322 221 265 334 446 151  29
[25] 459 460 332 274 376 242 268  91 483  71  73 212
[37] 199 432  74 399 209 359 184 357 193 303 169 318

[[10]]
 [1] 158 175 164 395  79 203 448 235 467 211 361 441
[13] 412  17 466 261 388 202 294   1 288 424  50 187
[25] 232 147 309 176 390 478 352 431 237  42 363 386
[37] 387 404 429 123 179  41 289 107 339 127 244 243
# 计算k次训练得到的模型的测试误差大小
error <- function(k,hp){
  err <- 0
  for (i in 1:k){
    cvlist <- cvsamp(k = k,datasize = nrow(data.train))
    trainset <- data.train[-unlist(cvlist[i]),]
    testset <- data.train[unlist(cvlist[i]),]
    Y=class.ind(trainset[,10])
    ytrue <- testset$Class
  
    model <- nnet(trainset[,-10],Y,softmax=TRUE,
                  size=hp[1],maxit=hp[2])
    Ypred <- predict(model,testset[,-10])
    ypred <- max.col(Ypred)
    err <- err + sum(ypred != ytrue)/nrow(testset)
  } 
  return(err/k)
}

控制隐藏层节点数:

size <- 1:10
errlist <- vector()
for (i in size){
  errlist <- c(errlist, error(k,c(i,200)))
}

plot(size, errlist)

控制迭代次数:

maxit <- seq(1,500,10)
errlist <- vector()
for (i in maxit){
  errlist <- c(errlist, error(k,c(4,i)))
}

plot(maxit[2:length(maxit)], errlist[2:length(errlist)],
     type = "b")

Leave-one-out

留一法(LOO)是k-fold的特例。当数据大小为N,且k=N时,即为留一法。
好处:不受样本划分方法的影响;比训练集只缺了一个样本,所以得到的模型与训练集训练的模型很相似。
坏处:当模型过大时,花费时长过长,很难实现。

本题中的数据有699个个体,LOO费时稍多,故用k折交叉验证。

  • 11
    点赞
  • 100
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
调参是指根据实际情况和需求,对模型中的参数进行调整以达到更好性能的过程。在R语言中,可以使用神经网络nnet来构建预测模型,而调参就是为了优化模型的表现。 首先,我们需要确定哪些参数可以调节。nnet模型中可以调节的参数有隐藏层节点数(size)、最大迭代次数(maxit)、学习率(decay)以及正则化程度(maxNWts)。这些参数的改变会直接影响模型的拟合效果和训练速度。 其次,我们应该通过实验来找到最优参数组合。可以使用交叉验证的方法,在不同的参数组合下进行训练和测试,并评估模型的性能。比如可以使用k-fold交叉验证,将数据集分为k份,每次选取其中一份作为测试集,剩下的k-1份作为训练集,重复k次,最终得到k次测试结果的平均值作为评估指标。 针对不同参数,可以采用不同的调整策略。对于隐藏层节点数,可以从一个较小的值开始尝试,逐渐增加节点数直到模型性能不再提升为止;对于最大迭代次数,可以根据模型的收敛情况来选择合适的迭代次数;学习率可以通过设置不同的初始值,观察其对模型训练速度和收敛性的影响;对于正则化程度,可以尝试不同的取值来平衡模型的拟合能力和泛化能力。 最后,根据实验结果选择最优的参数组合,并使用该组合重新训练整个数据集的模型。注意,应该对模型进行验证,确保模型的预测效果符合要求。 总之,通过实验和评估,根据模型的性能选择最佳参数组合,可以优化nnet模型的预测效果。调参是一个迭代的过程,需要耐心地进行实验和分析,以达到更好的预测效果。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值