卷积层理解及应用到边缘检测

二维卷积神经网络:原理与边缘检测应用,
本文介绍了二维卷积神经网络的工作原理,包括互相关运算与卷积运算的关系,特征图和感受野的概念,以及如何通过卷积层进行边缘检测。重点展示了如何实现二维卷积层的计算和应用实例。

目录

前言

一、 二维互相关运算

1.互相关运算和卷积运算

2.特征图和感受野

二、二维卷积层

三、图像中物体边缘检测

总结


前言

卷积神经网络(convolutional neural network)是含有卷积层(convolutional layer)的神经网络。本章介绍卷积神经网络最常见的二维卷积层工作原理。它有高和宽两个空间维度,常用来处理图像。


一、 二维互相关运算

虽然卷积层得名于卷积(convolution)运算,但我们通常在卷积层中使用更加直观的互相关(cross-correlation)运算。

一个二维输入数组和一个二维核(kernel)数组通过互相关运算输出一个二维数组。

0×0+1×1+3×2+4×3=19,                                1×0+2×1+4×2+5×3=25,

3×0+4×1+6×2+7×3=37,                                4×0+5×1+7×2+8×3=43. 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值