目录
前言
卷积神经网络(convolutional neural network)是含有卷积层(convolutional layer)的神经网络。本章介绍卷积神经网络最常见的二维卷积层工作原理。它有高和宽两个空间维度,常用来处理图像。
一、 二维互相关运算
虽然卷积层得名于卷积(convolution)运算,但我们通常在卷积层中使用更加直观的互相关(cross-correlation)运算。
一个二维输入数组和一个二维核(kernel)数组通过互相关运算输出一个二维数组。

0×0+1×1+3×2+4×3=19, 1×0+2×1+4×2+5×3=25,
3×0+4×1+6×2+7×3=37, 4×0+5×1+7×2+8×3=43.
二维卷积神经网络:原理与边缘检测应用,

本文介绍了二维卷积神经网络的工作原理,包括互相关运算与卷积运算的关系,特征图和感受野的概念,以及如何通过卷积层进行边缘检测。重点展示了如何实现二维卷积层的计算和应用实例。
最低0.47元/天 解锁文章
1090

被折叠的 条评论
为什么被折叠?



