OpenCV码源笔记——RandomTrees (一)

OpenCV2.3中Random Trees(R.T.)的继承结构
7-22-2011 10-25-55 AM

API

CvRTParams定义R.T.训练用参数,CvDTreeParams的扩展子类,但并不用到CvDTreeParams(单一决策树)所需的所有参数。比如说,R.T.通常不需要剪枝,因此剪枝参数就不被用到。
max_depth
  单棵树所可能达到的最大深度
min_sample_count  树节点持续分裂的最小样本数量,也就是说,小于这个数节点就不持续分裂,变成叶子了
regression_accuracy  回归树的终止条件,如果所有节点的精度都达到要求就停止
use_surrogates  是否使用代理分裂。通常都是false,在有缺损数据或计算变量重要性的场合为true,比如,变量是色彩,而图片中有一部分区域因为光照是全黑的
max_categories  将所有可能取值聚类到有限类,以保证计算速度。树会以次优分裂(suboptimal split)的形式生长。只对2种取值以上的树有意义
priors  优先级设置,设定某些你尤其关心的类或值,使训练过程更关注它们的分类或回归精度。通常不设置
calc_var_importance  设置是否需要获取变量的重要值,一般设置true
nactive_vars  树的每个节点随机选择变量的数量,根据这些变量寻找最佳分裂。如果设置0值,则自动取变量总和的平方根
max_num_of_trees_in_the_forest  R.T.中可能存在的树的最大数量
forest_accuracy  准确率(作为终止条件)
termcrit_type  终止条件设置
  -- CV_TERMCRIT_ITER  以树的数目为终止条件,max_num_of_trees_in_the_forest生效
  -- CV_TERMCRIT_EPS  以准确率为终止条件,forest_accuracy生效
  -- CV_TERMCRIT_ITER | CV_TERMCRIT_EPS  两者同时作为终止条件
CvRTrees::train训练R.T.
return bool  训练是否成功
train_data  训练数据:样本(一个样本由固定数量的多个变量定义),以Mat的形式存储,以列或行排列,必须是CV_32FC1格式
tflag  trainData的排列结构
  -- CV_ROW_SAMPLE  行排列
  -- CV_COL_SAMPLE  列排列
responses  训练数据:样本的值(输出),以一维Mat的形式存储,对应trainData,必须是CV_32FC1或CV_32SC1格式。对于分类问题,responses是类标签;对于回归问题,responses是需要逼近的函数取值
var_idx  定义感兴趣的变量,变量中的某些,传null表示全部
sample_idx  定义感兴趣的样本,样本中的某些,传null表示全部
var_type  定义responses的类型
  -- CV_VAR_CATEGORICAL 分类标签
  -- CV_VAR_ORDEREDCV_VAR_NUMERICAL)数值,用于回归问题
missing_mask  定义缺失数据,和train_data一样大的8位Mat
params  CvRTParams定义的训练参数
CvRTrees::train训练R.T.(简短版的train函数)
return bool  训练是否成功
data  训练数据:CvMLData格式,可从外部.csv格式的文件读入,内部以Mat形式存储,也是类似的value / responses / missing mask。
params CvRTParams定义的训练参数
CvRTrees:predict对一组输入样本进行预测(分类或回归)
return double  预测结果
sample  输入样本,格式同CvRTrees::train的train_data
missing_mask  定义缺失数据

Example:

  1. #include <cv.h>
  2. #include <stdio.h>
  3. #include <highgui.h>
  4. #include <ml.h>
  5. #include <map>
  6.  
  7. void print_result(floattrain_err,floattest_err,
  8.                   constCvMat*_var_imp)
  9. {
  10.     printf( "train error    %f\n", train_err );
  11.     printf( "test error    %f\n\n",test_err );
  12.  
  13.     if (_var_imp)
  14.     {
  15.         cv::Matvar_imp(_var_imp),sorted_idx;
  16.         cv::sortIdx(var_imp,sorted_idx,CV_SORT_EVERY_ROW +
  17.             CV_SORT_DESCENDING);
  18.  
  19.         printf( "variable importance:\n" );
  20.         int i, n = (int)var_imp.total();
  21.         int type =var_imp.type();
  22.         CV_Assert(type ==CV_32F ||type ==CV_64F);
  23.  
  24.         for( i = 0; i < n; i++)
  25.         {
  26.             intk =sorted_idx.at<int>(i);
  27.             printf( "%d\t%f\n", k, type == CV_32F ?
  28.                 var_imp.at<float>(k) :
  29.                 var_imp.at<double>(k));
  30.         }
  31.     }
  32.     printf("\n");
  33. }
  34.  
  35. int main()
  36. {
  37.     const char*filename ="data.xml";
  38.     int response_idx = 0;
  39.  
  40.     CvMLData data;
  41.     data.read_csv(filename );// read data
  42.     data.set_response_idx(response_idx );// set response index
  43.     data.change_var_type(response_idx,
  44.         CV_VAR_CATEGORICAL );// set response type
  45.     // split train and test data
  46.     CvTrainTestSplitspl( 0.5f );
  47.     data.set_train_test_split( &spl );
  48.     data.set_miss_ch("?");// set missing value
  49.  
  50.     CvRTrees rtrees;
  51.     rtrees.train( &data,CvRTParams( 10, 2, 0,false,
  52.         16, 0, true, 0, 100, 0,CV_TERMCRIT_ITER ));
  53.     print_result( rtrees.calc_error( &data,CV_TRAIN_ERROR),
  54.         rtrees.calc_error( &data,CV_TEST_ERROR ),
  55.         rtrees.get_var_importance() );
  56.  
  57.     return 0;
  58. }


 

References:
[1] OpenCV 2.3 Online Documentation: http://opencv.itseez.com/modules/ml/doc/random_trees.html
[2] Random Forests, Leo Breiman and Adele Cutler: http://www.stat.berkeley.edu/users/breiman/RandomForests/cc_home.htm
[3] T. Hastie, R. Tibshirani, J. H. Friedman. The Elements of Statistical Learning. ISBN-13 978-0387952840, 2003, Springer.

 

 

转自:http://lincccc.blogbus.com/logs/157846624.html

 

opencv是一个开源的计算机视觉库,opencv2.4.9是其中的一个版本。在opencv2.4.9中,有一个模块叫做stitching,用于图像拼接。 图像拼接是将多张图像按照一定的顺序和方式进行合并,形成一张更大视野覆盖范围的图像。拼接的过程需要解决图像间的重叠区域匹配、图像变换与叠加等问题。 在opencv2.4.9的stitching模块中,主要有以下几个重要的类: 1. Stitcher类:拼接器类,用于执行拼接的主要操作。它提供了一系列的方法,如设置拼接的模式、添加要拼接的图像等。 2. FeaturesFinder类:特征点检测类,用于在图像中寻找特征点。该类利用SIFT、SURF等算法来检测图像中的关键点,以便进行匹配。 3. FeaturesMatcher类:特征点匹配类,用于对图像中的特征点进行匹配。该类使用KNN算法进行特征点的匹配,并利用RANSAC算法进一步筛选特征点,剔除误匹配。 4. Estimator类:变换估计类,用于估计图像间的变换参数。该类可以通过特征点的对应关系,计算图像间的旋转矩阵、平移矩阵等变换参数。 5. Blender类:图像融合类,用于将拼接后的图像进行融合。该类可以进行多种融合方式,如线性融合、多频融合等。 通过以上的类和方法,opencv2.4.9的stitching模块能够完成图像拼接的过程。整个过程包括特征点检测、特征点匹配、变换参数估计和图像融合等步骤。 需要指出的是,本文只是对opencv2.4.9的stitching模块进行了初步的介绍,具体的源码分析需要深入研究。整个源码工程庞大,包含很多细节和算法,需要对计算机视觉和图像处理有较深入的理解才能进行分析和改进。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值