《Enhancing the reliability of out-of-distribution image detection in neural networks.》 ICLR’18
OOD经典baseline。
ODIN 的想法很简单,既然模型对ID 和 OOD 样本输出的 softmax 预测概率分布不同,那么可不可以让它们分布差异变得更大呢?这样便可以更容易的检测 OOD 样本。本文提出两种方法辅助:Temperature scaling和Input Preprocessing:

相比于 baseline, 使用 Temperature scaling 和 Input Preprocessing 能有效地使得 ID 和 OOD 样本 softmax 分布概率差异变大。
Temperature Scaling
p i ( x ; T ) = exp ( f i ( x ) / T ) ∑ j = 1 N exp ( f j ( x ) / T ) p_{i}(\boldsymbol{x} ; T)=\frac{\exp \left(f_{i}(\boldsymbol{x}) / T\right)}{\sum_{j=1}^{N} \exp \left(f_{j}(\boldsymbol{x}) / T\right)} pi(x;