【分布外检测】ODIN ICLR‘18

ODIN是一种用于增强神经网络区分ID(已知分布)和OOD(未知分布)样本能力的方法。通过温度缩放和输入预处理,使ID和OOD样本的softmax概率分布差异增大,从而提高检测效果。温度缩放利用高温度参数使softmax分数更集中,而输入预处理则模仿对抗样本,但朝着正确类别方向进行微调,强化ID样本的分类信心。尽管这种方法可能使未扰动的ID测试样本显得偏离分布,但整体上增强了模型的检测性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

《Enhancing the reliability of out-of-distribution image detection in neural networks.》 ICLR’18

OOD经典baseline。

ODIN 的想法很简单,既然模型对ID 和 OOD 样本输出的 softmax 预测概率分布不同,那么可不可以让它们分布差异变得更大呢?这样便可以更容易的检测 OOD 样本。本文提出两种方法辅助:Temperature scaling和Input Preprocessing:

img

相比于 baseline, 使用 Temperature scaling 和 Input Preprocessing 能有效地使得 ID 和 OOD 样本 softmax 分布概率差异变大。

Temperature Scaling

p i ( x ; T ) = exp ⁡ ( f i ( x ) / T ) ∑ j = 1 N exp ⁡ ( f j ( x ) / T ) p_{i}(\boldsymbol{x} ; T)=\frac{\exp \left(f_{i}(\boldsymbol{x}) / T\right)}{\sum_{j=1}^{N} \exp \left(f_{j}(\boldsymbol{x}) / T\right)} pi(x;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值