【多任务优化】DWA、DTP、Gradnorm(CVPR 2019、ECCV 2018、 ICML 2018)

本文介绍了多任务学习模型的优化方法,包括DWA(Dynamic Weight Averaging)、DTP(Dynamic Task Prioritization)和GradNorm。DWA根据任务loss下降速度调整权重,DTP利用任务的KPI值动态调整权重,而GradNorm旨在使不同任务的loss量级和收敛速度接近,通过gradient loss优化训练权重。
摘要由CSDN通过智能技术生成

多任务学习模型的优化

有多个task就有多个loss,常见的MTL模型loss可以直接简单的对多个任务的loss相加:
L = ∑ i L i L=\sum_{i} L_{i} L=iLi
显然这种做法有很大问题,因为不同task的label分布不同,同时不同task的loss量级也不同,整个模型很可能被一些loss特别大的任务主导。最简单的方法是加权loss,人工设计权重:
L = ∑ i w i ∗ L i L=\sum_{i} w_{i} * L_{i} L=iwiLi
但是这样这个权重在整个训练周期中都是固定的,不同训练阶段权重可能变化,动态权重则为:
L = ∑ i w i ( t , θ ) ∗ L i L=\sum_{i} w_{i}(t, \theta) * L_{i} L=iwi(t,θ)Li
t是训练的step,theta是模型其他参数。但是这种做法也不一定有人工设计权重好。

一些设计 w i ( t , θ ) w_{i}(t, \theta) wi(t,θ) 的方法:

《End-to-End Multi-Task Learning with Attention》 CVPR 2019

CVPR 2019的《End-to-End Multi-Task Learning with Attention》提出的Dynamic Weight Averaging(DWA),核心公式如下所示:
r n ( t − 1 ) = L n ( t − 1 ) L n ( t − 2 ) w i ( t ) = N exp ⁡ ( r i ( t − 1 ) / T ) ∑

  • 1
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值