1.ImageNet:
ImageNet 项目是一个用于物体对象识别检索大型视觉数据库。截止2016年,ImageNet 已经对超过一千万个图像的url进行手动注释,标记图像的类别。在至少一百万张图像中还提供了边界框。ImageNet 举办一年一度的软件竞赛,叫做 ImageNet 大尺度视觉识别挑战(ImageNet Large Scale Visual Recognition Challenge,ILSVRC)。主要内容是通过算法程序实现正确分类和探测识别物体与场景,评价标准就是Top-5 错误率。
2.top-5 error:
对一张图像预测类别,概率前五中,只要有一个和人工标注类别相同就算对,否则算错。
则Top-5错误率就是指模型对一张图片预测前五的概率中不包含正确结果的占比。
3.top-1 error:
对一张图片进行,只有模型预测概率最大的是正确答案,才认为该图片预测正确。