论文通过将物体建模成一个物体中心点,使用关键点估计网络来预测物体中心并回归一系列物体属性(长宽高等等)。并且相比于基于anchor的物体检测器,CenterNet 更简单、更快、更准确。 网络的整个运行流程为:在训练时,先将图像送入全卷积神经网络中生成热图,热图中的峰值点就是物体的中心点,每一个峰值点的图像特征用于预测物体框的属性。在预测时,仅为简单的网络前向过程,没有NMS作为后处理。
作者认为CenterNet与one stage的基于anchor的目标检测方法十分接近,但是却有几点不同:
① CenterNet 只针对物体的位置分配 “anchor”,而不是基于物体框之间的交并比,因此不需要手动设置前景和背景的分类阈值
② CenterNet 在关键点热图中提取局部峰值点,对于每一个物体,只有一个positive “anchor”,因此不需要NMS作为后处理
③ 相比于传统物体检测(output stride of 16),CenterNet 使用更大的输出分辨率(output stride of 4),这使得CenterNet不需要多个anchor来回归物体的位置
(一)网络训练
输入图像维度
, 输出关键点热图维度
,其中C是类别数,输出步长R默认值设置为4。当检测到物体关键点时
,当检测点为背景时
。作者尝试了几种不同的全卷积编码-解码网络,用于关键点热图的生成,分别是 A stacked hourglass network(沙漏网络), up-convolutional residual networks (残差网络) , and deep layer aggregation (DLA) 。
对于每一个类别c的真值关键点
,计

本文介绍了一种基于关键点估计的目标检测方法CenterNet。该方法仅使用物体中心点预测物体位置及属性,简化了检测流程,提高了检测速度和准确性。文章详细阐述了其网络训练、损失函数、推理过程等内容。
最低0.47元/天 解锁文章
1769

被折叠的 条评论
为什么被折叠?



