生物导航-鸽子

鸽子是大家非常熟悉的一种鸟。它朴实无华,没有漂亮羽毛作为装饰,通常以雪白、浅灰、褐色多见,在这种平淡的外表之下,它竟深藏着惊人的本领和迷人的奥谜。

鸽子能穿越蓝天传递信息,速度快,方位准,令人叹为观止,它们是怎样在辽阔的天空中辨别方向,准确的找到目的地的呢?要知道,鸽子有时要飞越几百、几千千米的路程,这期间有数不清的障碍,包括崇山峻岭,大江大河,恶劣的气候变化等,它们是怎样将这许多困难一一克服?为此,人们从以下几方面进行了研究:


一:利用太阳的位置来识别方位


最初有人假设鸽子是利用太阳的位置来识别方位的,认为鸽子有套辨别自己巢位与太阳方位的能力。当鸽子飞到一个陌生的地方时,能通过测定太阳方位的一小部分来推测太阳在中午的高度,把它与自己在巢区最后一次所见的太阳高度比较,由此推测它在巢区之南或北侧,通过测定巢区和移动区内的方位从而确定自己的东西向。但没有任何证据表明鸽子能测定经度以确定具体位置。目前一致认为太阳只能用与指南方向。但是不同意这种假设的人提出疑问:鸽子在阴天或者雨天甚至夜晚仍能飞行,它又是靠什么来定向呢?


二:次声理论


有人提出了次声理论。他们认为鸽子对次声的灵敏性很高,能分辨来自远方的人类难以听到的声音。试验也证明鸽子对次声即频率极低的声波特别敏感,但人们还无法证明,它究竟是怎样利用这独特的能力来导航的,假如说,能分辨来自数千千米外的同伴的叫声,它们的听觉能力似乎又达不到,从这一方面来看,问题还不那么简单。


三:通过嗅觉辨别方向


有人把注意力放到了鸽子的嗅觉器官上,认为在每个地区有由挥发性气味物质以特定方式构成的嗅图。他们假设鸽子能经过地区留下气味,这种特殊的气味在空气中形成一个看不见的网络中能找出一个个“标位点”。

这一假设提出后,德国的学者做出了大量的验证,他们在试验中麻醉鸽子的嗅觉器官,并用腊把鸽子的鼻子塞住,可被实验的鸽子放飞以后,居然顺顺当当的飞回旧巢,靠嗅觉定位的假设被推翻了。


四:磁学理论


后来,科学家们试图用磁学理论来解释鸽子的定向能力。地球磁场在广大区城上随不同地点和方向而不同。从而可为鸽子提供位置信息。磁场强度,磁倾角,磁偏角相互之间可形成一个高度非正交的网。在数百千米区域内,这些成分大致恒定。但在整个地球表面则是逐渐变化的。这些变化的成份相互形成的梯度网称为导航图,可用来进行定向。近年来的实验证实了磁导航的存在。当给鸽子弹的头上加上一块具有特定极性的人工磁铁后,鸽子的飞行不能进行正确的定向;每当太阳质子活动剧烈时,地球磁场受到干扰,鸽子的返巢率也随之大大降低。此外,初步的研究结果表明,在鸽子的颅骨下方的前脑中具有长约0.1微米的针状磁铁。他们认为鸽子能利用地磁来定向,它们具有探测地球四个基点的能力,能接受到磁场反馈的变化信号,可是,也有人认为这些变化是极细微的,鸽子能否感受得到这些细微的变化,还需要足够的证明。

但是,有实验已经证明,磁感应能对鸽子产生影响。美国学者威廉.基伦把一小块磁铁系在信鸽的头上,结果发现:若是晴天,似乎影响不大,到了阴天,信鸽就变得有些迷茫,找不到正确的方向。虽然这项试验结果并没能揭示信鸽定向的奥秘,但它从另一个角度开辟了研究的途径。

以上假说只能说明定向的某个方面,总之,当鸽子展开双翅,飞向蓝天云海时,它们显得那么自信从容,谁也不会怀疑它们的辨向能力。所以,数千年来鸽子一直是人类的朋友,忠实的信使。

较为权威的解释包括敏锐嗅觉说和探测磁场说。如今在经过数十年的调查研究后,科学家证实了鸽子的上喙确实具有一种能够感应磁场的晶胞,正是这种器官为鸽子的飞行导航。有关这一研究的报告发表在11月25日的《自然》杂志上。

秘密藏在嘴上

最近,科学家在实验室里进行了一系列细致的行为试验后宣布,他们首次明确证明鸽子具有磁性感知能力,就像简易的磁性罗盘,这让鸽子也许还有其他鸟类和海龟一样,是利用地球磁场进行导航的。美国北卡罗莱纳大学的生物学专家卡杜拉.诺拉博士在教堂山艺术科学院说:“关于鸽子能够识途的能力有两种主要的理论:一种是鸽子靠嗅觉找到回家的路;另一种是在它们的脑中有一个磁力图。我们的工作有力地支持了后一种理论。当然,这一理论还需进一步的证明。”

对鸽子的这种研究是诺拉在新西兰的一项博士研究课题,有关这一研究的报告发表在11月25日的《自然》杂志上,研究报告的另几位作者是新西兰奥克兰大学的迈克尔.沃克博士、迈克尔.达维森博士和马丁.韦尔德博士。

美国北卡罗莱纳大学著名的生物学教授肯尼思.罗曼博士说:“这是一项迷人的研究,在这项研究中,诺拉训练了一些能够对磁场作出反应的信鸽。这是一项生物学上的重要新闻,因为,一些人在以前多年的时间里曾做过10多次试验,但均告失败,诺拉是第一个找到一种行之有效的方法的人。”

试验是这样进行的


诺拉说,在实验中,如果鸽子准确地找到设在隧道一样的房间里的两个平台,它们就会受到食物奖励。在正常的条件下,它们会随便爬到两个平台中的任何一个寻找吃的。但当在放有食物的平台上面和下面都放上马蹄磁铁对它们进行诱导时,这些鸽子就会准确地找到食物。准确率达到75%。这比它们随意寻找食物的准确率要高得多。

在知道了鸽子能够对磁场刺激作出反应后,诺拉下一步要做的是找出鸽子身上像磁场感受器一样的东西究竟在什么部位。

他们先将一小块强磁铁绑在鸽子上喙上,结果这些鸽子找错平台的次数超过了一半。他们再将一块重量相同但没有磁力的黄铜绑在鸽子的喙上时,结果没有什么影响。接着,他们在鸽子的上喙进行局部麻醉以及切断眼三*神经,发现这些都会削弱鸽子探测磁场的能力。但当切断传递嗅觉信息的嗅觉神经时,却并不会削弱鸽子感知磁场的能力。通过这些实验,诺拉相信鸽子的磁场感知能力在鼻子那一带。诺拉说:“在试验中我们知道鸽子具有磁场识别能力。不过,通过各种方法也可以削弱这种能力,现在我们可以说鸽子的磁场感知能力在鼻子那一带。”

也许答案不止一个

诺拉的研究结果是令人信服的,也就是鸽子是靠地球磁场来识途的。其他研究结果也显示,鸽子识途的方法可能有多种,因为其他科学家也有另外的发现。比如,英国研究人员于今年2月发表了一份研究报告,也声称解开了鸽子辨别归途之谜。他们认为,鸽子认路回家的秘密其实非常简单和直接,像其他鸟类一样,它们经常沿公路、铁路、运河和其他人造航运、航空标志等飞行,最终到达目的地。

这项研究是牛津大学动物学家进行的,他们对归家的鸽子进行了10年之久的研究,在最后的一年半里,他们采用了最先进的全球定位技术,得以跟踪这种飞禽所飞过的路径,误差在1~4米之内。牛津大学动物学系的研究人员说,经过10年多的国际研究,结果发现鸽子似乎并不依赖其与生俱来的辨别方向的本能,而是按照道路系统飞行,这确实使研究人员感到意外。如果作远程飞行或首次飞行,鸽子会利用它们识别方向的天性,根据太阳和星辰辨别方位。但只要飞过一次,鸽子就会按熟悉的路线往回飞,很像人们下班后驱车或步行回家。研究人员说:“有些人可能认为此事微不足道,但对我们来说非常重要,因为这将涉及鸟的记忆结构,以及在鸟的眼里地图是什么样子。”

可是,这一研究结果引起了一些鸟类研究专家的争议,他们坚持认为,鸽子是借助太阳或地磁感应来确定方向飞到目的地的。法兰克福大学飞鸽研究专家威尔兹柯即对牛津大学的研究表示了怀疑。他的研究表明,鸽子利用太阳、地磁场,甚至是嗅觉等各种能力来认路。威尔兹柯说,鸽子喙部带有微小的磁铁粒子,通过它们可以和地磁场产生感应。很显然,威尔兹柯的看法与诺拉等科学家的最新研究结果是一致的。

识途是综合因素的结果

现在科学家比较一致的看法是,包括鸽子等鸟类可以通过本地的地球磁场,来确定自己的绝对位置和相对位置。从地球的两个磁极发出的磁力线,在两极地区是垂直的,到了南北回归线以内的地区,转为平行。在高纬度地区,地球磁力非常强;而在赤道地区,就会弱一些。由于磁力大小和方向的不同,形成了一个个地磁路标。

有大量的证据表明,鸟类可以依据这种地磁路标作为自己的导航系统。鸟类可能是通过眼部视网膜内的色素感知地球磁场的强度和方向的。此外,在上喙处,结晶状的类似磁铁矿的组织,也可以感应到地球磁场。但科学家们表示,这还不是鸟类的全部本领。从上世纪50年代开始,鸟类学家就已经认识到,鸟类将太阳作为罗盘确定方向。太阳每天从东方升起,一般来说大约每小时运行15度,最后在西方落下。对于这个问题,鸟类绝对是专家。

进一步的研究发现,鸟类确定方向是综合多种线索和感觉的。更为有趣的是,随着环境的变化,鸟类可以非常适宜地调整自己的方向决策系统。例如,鸽子在晴天会用太阳作为罗盘,但是当太阳不可见时,它们就主要参考感应到的地磁信号了。那些在黎明和黄昏时分行动的候鸟,例如知更鸟,很有可能是通过日出和日落时的偏振光来确定方向的
<think>好的,我现在需要回答用户关于鸽子飞行路径规划算法的问题。首先,用户提到了他们之前引用的内容,主要是关于无人机路径规划的不同算法,比如BKA、CO、PSO、PIO等,以及这些算法在集群路径规划中的应用。用户现在想了解鸽子飞行路径规划的相关算法或实现。 首先,我需要确定鸽子飞行路径规划与无人机路径规划有什么异同。可能鸽子路径规划需要考虑生物行为,比如群体行为、导航机制等,而无人机可能更注重避障、能源效率等。所以需要结合生物启发式算法和传统路径规划方法。 接下来,我需要查找是否有专门模仿鸽子飞行行为的优化算法。比如,粒子群优化(PSO)是模拟鸟群,而黑翅鸢优化算法(BKA)是模拟猛禽。是否有鸽群优化算法?记得有一种叫做鸽群优化算法(Pigeon-Inspired Optimization, PIO),这可能就是用户提到的引用中的PIO算法。需要确认这一点。 根据用户提供的引用[3]和[4],里面提到了PIO算法用于无人机集群路径规划。所以PIO可能确实是基于鸽子行为设计的。我需要进一步了解PIO的原理,以及它在路径规划中的具体应用方法。 然后,用户可能需要了解PIO的基本原理、实现步骤,以及如何应用于路径规划问题。此外,可能还需要给出一些代码示例,比如MATLAB或Python的实现,但用户之前提供的示例中有Python代码,所以可能更倾向于Python,但引用中提到了MATLAB代码。需要明确用户的需求,但用户这次的问题没有明确语言,所以可能需要给出算法步骤和可能的实现框架。 此外,需要结合已有的引用内容。引用中提到无人机路径规划的成本包括路径成本、威胁成本、高度成本和转角成本,这可能同样适用于鸽子飞行路径规划,但需要考虑鸽子的具体行为,如群体协作、地磁导航等。 现在,我需要组织这些信息,分步骤回答: 1. 鸽子飞行路径规划的特点:可能包括群体智能、地磁导航、视觉地标识别等。 2. 相关算法:PIO算法,可能还有其他生物启发算法如PSO。 3. 算法原理:模拟鸽子的归巢行为,包括地磁感知和地标识别阶段。 4. 实现步骤:分阶段优化,结合全局和局部搜索。 5. 应用实例:比如无人机或机器人路径规划中的实现,结合用户提供的引用中的方法。 6. 代码示例:可能提供PIO的伪代码或Python代码框架。 7. 相关问题:引导用户深入探讨。 需要确保LaTeX格式正确,行内公式用$...$,独立公式用$$...$$。同时引用用户提供的参考文献,如引用[3]和[4]中的PIO算法。 现在检查是否有遗漏点,比如是否还有其他算法,或者鸽子特有的行为需要考虑,比如避免天敌、能量效率等。另外,路径规划中的约束条件,如障碍物、动态环境等,可能需要结合鸽子导航策略。 最后,生成相关问题,引导用户进一步提问,如算法比较、参数调整、具体应用案例等。</think>### 鸽子飞行路径规划算法及实现 鸽子飞行路径规划通常借鉴其自然导航能力(如地磁感知、视觉地标识别和群体协作),相关算法主要基于生物启发式优化方法。以下是关键内容: --- #### 1. **鸽子飞行路径规划的特点** - **群体协作**:鸽群通过跟随领头鸽或共享信息实现高效飞行[^3]。 - **多模态导航**:结合地磁感应、太阳方位和视觉地标[^1]。 - **动态避障**:模拟鸽子在飞行中避开障碍物的策略[^2]。 --- #### 2. **相关算法:鸽群优化算法(Pigeon-Inspired Optimization, PIO)** PIO是模拟鸽子归巢行为设计的优化算法,包含两个阶段: 1. **地磁导航阶段(全局搜索)** 鸽子通过地磁感应确定大致方向,算法中使用速度-位置模型更新个体位置: $$v_i(t) = v_i(t-1) \cdot e^{-Rt} + \text{rand} \cdot (x_{\text{best}} - x_i(t-1))$$ $$x_i(t) = x_i(t-1) + v_i(t)$$ 其中$R$为地图因子,$x_{\text{best}}$为当前最优位置。 2. **地标导航阶段(局部搜索)** 接近目标时,鸽子依赖视觉地标,群体中个体数量按比例减少: $$N(t) = \frac{N(t-1)}{2}$$ 剩余个体向中心点$x_{\text{center}}$靠近: $$x_i(t) = x_i(t-1) + \text{rand} \cdot (x_{\text{center}} - x_i(t-1))$$ [^3][^4] --- #### 3. **路径规划实现步骤** 以无人机集群路径规划为例(可类比鸽子群体): 1. **建模环境**:将地图转化为栅格或三维空间模型,标识障碍物和威胁区域[^1]。 2. **定义成本函数**:总成本包括路径长度、威胁规避、高度约束和转向代价[^4]。 3. **应用PIO算法**: - 初始化鸽群位置(即候选路径)。 - 通过两阶段迭代优化路径成本。 4. **输出最优路径**:选择成本最低的路径。 --- #### 4. **代码示例(PIO伪代码)** ```python def pigeon_inspired_optimization(): initialize_pigeons() # 随机生成初始路径 while not converge: # 地磁阶段:全局搜索 for each pigeon in pigeons: update_velocity() # 根据公式更新速度 update_position() # 更新路径节点 # 地标阶段:局部搜索 reduce_pigeons() # 淘汰半数个体 update_center() # 计算剩余个体的中心 adjust_positions() # 向中心靠近 return best_path ``` --- #### 5. **应用场景** - **无人机集群**:多机协同搜索与救援[^4]。 - **机器人导航**:动态环境下的避障路径生成。 - **物流配送**:优化运输路径以减少能耗。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值