【深度学习基础知识 - 09】tensorflow和pytorch的相同点和区别

相同点

  • tensorflow和pytorch都是为深度学习提供的开源框架。
  • 都有专门的团队在维护和更新。
  • 社区环境都很好,开源项目、模型很多。

区别

  • 两者最主要的区别在于tensorflow是基于静态图构图的,pytorch是基于动态图构图的,这两者的差异主要是框架设计时的思路导致的。
  • 直观来说,tensorflow在搭建框架的时候是没有真正的数据传递的,可以理解为设计模型和运行模型、传递数据是分开的,在调试时无法读取对应op的具体输入输出。
  • pytorch是基于动态图构图的,可以理解为设计模型和运行模型、传递数据是同步进行的,在调试时断点打在哪里,就能看到具体的对应数据。
  • 通常,tensorflow提供的API更加底层,而pytorch提供的API封装的更为完善,如果想深入进行算子、op的设计,更建议使用tensorflow。如果想快速的搭建模型,比如打比赛时做model fusion等常见操作,则pytroch会让你的速度更快。

博主会持续更新一些深度学习相关的基础知识以及工作中遇到的问题和感悟,喜欢请关注、点赞、收藏。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

雁宇up

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值