AI 给我们带来了什么?
人们对大语言模型的看法是复杂而矛盾的。一方面,人们惊叹于AI技术的巨大威力及其对未来发展的深远影响;另一方面,又困惑于AI在实际应用中的具体落地场景。有人认为AI更适合企业服务(2B),有人则看好消费者市场(2C),还有人主张先2C后2B。一个被誉为“最伟大的发明”为何难以找到明确的应用方向?这是一个值得深思的问题。
要回答这个问题,我们首先需要探讨AI究竟能做什么,以及它能为我们带来哪些实际价值。
改变知识的传播方式
在人类发展史上,语言和文字是最重要的发明。语言促进了交流,而文字则实现了思想的记录。文字的诞生,如同为人类大脑安装了“外部存储器”,使思想得以脱离个体,通过物理形式保存和传承。从此,人类的思想不再局限于口口相传,而是通过文字跨越时空,流传千年。
人类的思想、历史记载和智慧结晶被记录在浩如烟海的书籍中。然而,从这些书籍中获取知识并非易事,需要阅读大量文献。于是,教育应运而生,教师通过指导阅读和讲解,帮助学生理解书中的内容。
为了更生动、高效地传播信息,人类发明了报纸、杂志、电影、戏剧、歌曲、广播、电视等多种媒体形式。互联网技术进一步提升了知识搜索的效率,搜索引擎可以根据关键词快速找到相关内容。然而,搜索引擎的精准度有限,返回的结果中可能混杂着无关信息、广告甚至虚假内容。
如今,大语言模型正在彻底改变人们获取知识的方式。它如同一位“数字化智者”,上知天文地理,下至生活琐事,几乎可以回答任何问题;又像“村里的包打听”,能第一时间提供最新资讯。传统的搜索方式正在被AI接管,知识获取变得更加高效和直接。
提升文字工作效率
文章的生成、修改与润色
在现代生活和职业中,文字工作无处不在。除了作家、记者等以写作为职业的人群外,普通人同样需要通过文字表达思想或描述事物。工程师需要撰写产品手册和规格书,销售人员要创作广告文案,老板需准备演讲稿,甚至个体户也离不开社交媒体上的“小作文”。
在自媒体时代,写作与摄影一样,成为每个人都需掌握的技能。大语言模型能显著提升写作效率,用户只需用口语表达想法,AI即可生成专业文章。未来的写作将演变为“人机协作”模式,每个人都能拥有一个“AI秘书”,根据需求快速生成高质量内容。
文字翻译
翻译一直是受人尊敬的职业,但传统翻译工作耗时耗力,一部著作的翻译可能需要数年时间。因此,大量国外优秀著作和文学作品尚未被引入国内,中文译本仅占世界书籍的极小部分。
以大语言模型为代表的机器翻译技术正在颠覆这一领域。翻译的主要工作已转变为“译后编辑”,人机协作成为常态。AI不仅大幅提升了翻译效率,其准确性和可读性也逐步接近人工翻译水平。此外,语音即时翻译技术已达到同声传译的标准。
AI翻译技术的广泛应用显著提升了翻译质量和效率,并拓展了应用场景。这一变革催生了应用翻译研究的兴起,重点关注商务、科技、医疗和法律等领域的实际问题。尽管ChatGPT等大语言模型并非专为翻译设计,但其表现已超越谷歌翻译、DeepL等专业工具,尤其在应用翻译领域。
教育领域的变革
教育是AI的重要应用场景之一,其影响可分为两个方面:
优化现有教育体系
虽然改变现有教育体系困难重重,但利用AI技术提升效率却大有可为。AI大模型可以扮演以下角色:
- 大百科全书:回答学生的各类问题,包括课外知识。
- 辅导老师:协助完成家庭作业。
- 个性化检查:针对性地出题和测试。
随着多模态大模型的成熟,辅导作业、个性化出题等“应试教育”技术将规模化应用。
创新教育方法
上述技术可能加剧教育内卷,但对提升下一代的核心技能帮助有限。AI时代对就业者的要求正在改变,教育也应随之调整。传统知识传授的重要性下降,目标选择和创新思维成为关键。
世界经济论坛提出的“教育4.0”概念指出,未来学生需具备以下三种能力:
- 解决问题的能力:包括创造力、数据分析能力、批判性思维和毅力。
- 协作能力:善于沟通、倾听和团队合作,能够化解冲突。
- 适应能力:快速应对变化,在压力下做出有效决策并创新。
消除人机语言边界
长期以来,机器语言与人类自然语言存在巨大差异。机器语言语法严格、结构化,适合计算机处理;而自然语言则非结构化。大语言模型强大的非结构化语言处理能力正在弥合这一鸿沟。
自动生成代码与结构化数据
对大语言模型而言,生成机器代码比处理自然语言更简单。如今,AI生成前端代码、Python或JavaScript程序的准确性已非常高。程序员的工作逐渐转向需求提出、检查和调试,编写代码的任务将越来越少。
处理非结构化信息
大语言模型能准确理解自然语言,并通过Function Call、MCP等机制访问信息系统或物联网设备,使智能玩具、语音控制等应用变得简单。
非结构化信息转换
尽管AI能处理非结构化数据,但机器更擅长结构化数据。为了提高效率,需要将非结构化数据批量转换为结构化信息。大语言模型可“蒸馏”出机器可读的结构化数据,如产品属性、规格书等,大幅提升信息标准化效率。
AI的落地场景探讨
碎片化应用
大语言模型如同“万能工具”,其应用场景是碎片化的。虽然无处不在,却缺乏“重磅”场景。将众多小应用整合为“瑞士军刀”式的超级Agent,未必能吸引用户付费。寻找大模型落地场景的过程,如同“等待一场未至的台风”。
基础设施化
大模型的盈利模式可能类似于电信服务,按使用收费。当前的局面类似于互联网早期,开发应用的公司比提供基础设施的更容易成功。试图通过差异化大模型获取竞争优势的努力可能是徒劳的,除非能持续获取独特数据集。
不必过度担忧
尽管AI的推理能力日益强大,但其创新力仍无法与人类相比。人类的“涌现”能力——即突然产生新想法的特质,仍是AI难以企及的。
实现过去无法完成的任务
面对AI,我们更应思考如何利用它完成过去难以实现的目标:
- 翻译热潮:AI将大幅降低翻译成本,使大量国外优秀著作、影视作品和播客被引入国内,消除语言隔阂。
- 构建结构化信息模型:AI可高效生成标准化数据,推动工业4.0中AAS、ecl@ss等数据模型的普及。
- 支撑AI环境:后端系统需更加开放,API化和有偿服务将成为趋势。
- 智能推荐系统:AI可优化商品描述和推荐算法,提升电商平台的用户体验。
总之,AI正在深刻改变知识传播、工作效率、教育方式和人机交互,其潜力远未被完全发掘。我们需要以开放的心态拥抱这一技术,探索其更多可能性。