人们对大语言模型的看法是十分纠结,一方面惊呼AI 巨大威力以及对未来发展的冲击,另一方面却疑惑AI 的落地场景在什么地方。有人说2B,有人说2C。还有人说先2C 后2B。一个号称最伟大的发明,为什么找不到明确的应用呢?这是一个有趣的问题。
为了回答这个问题,我们首先要来看看AI 到底能做什么?能给我们带来什么价值。
改变知识的传播方式
在人类的发展历史中,语言和文字是最重要的发明。语言有助于交流,而文字用于记录。自从人类发明了文字之后,就好比人类的大脑有了外部存储器。思想能够脱离人类的大脑,通过物理的方式记录下来。人类的思想不在仅仅依靠口口相传,代代相传。而是通过文字记载传承千年。
人类的思想,历史记载,箴言等等都记录在成千上万种书籍之中。人类要从各种书籍中获取知识变得很困难,需要阅读许多的书籍。于是教育就诞生了。由教师指导我们阅读那些书籍,帮助我们理解书中的内容。
为了更加生动,有效地传播信息,人们发明了报纸,杂志,电影,戏剧,歌曲,广播,电视的等各种媒体形式。
互联网技术提高了搜索“知识”的效率。我们可以通过搜索引擎找到你需要的相关内容(文档,或者文档中的内容)
搜索引擎并不精准,你填入一个关键词,它们会找出一大堆内容,有些内容是你需要的,有些内容并不是你需要的,而有些内容是搜索引擎出于商业目的强加给你的(比如广告,虚假信息)。
大语言模型正在改变人们获取知识的方式,它成为一位数字化智者,上知天文地理,下至鸡毛蒜皮,你可以问他任何问题。他又是村里的包打听,村里发生的事情都能第一时间告诉你。搜索将成为过去。其实背后由AI 接管代劳了。
提高文字工作的效率
文章的生成,修改和润色
在现代生活和职业生涯中,我们几乎无时无刻地与文章打交道。除了作家,记者以写文章为生之外,我们普通人也需要通过文字表达思想和描述事物。工程师要写产品手册,规格书,这被称为技术写作。销售人员要写广告文案。老板要写演讲稿。哪怕是个体户,也需要写微博,朋友圈小作文。
在自媒体时代,写作与摄像一样,成为每个人都需要具备的技能。大语言模型能够有效地提升人类的写作能力,人类不需要纠结文字表达的细节,只需要能简单的口语表达自己的想法,AI就可以生成十分专业的文章。人类的写作将演变成人机交互的过程。每个人都配备了一个AI 秘书。按照你的想法,撰写文章。
文字翻译
自古以来,翻译家是令人尊敬的职业。翻译工作是一项重脑力劳动的工作,翻译一部著作有时候需要耗费几年的时间。也正是因为如此,国外的许多著作都没有翻译成中文。中文译本也许只是世界书籍的沧海一粟。大多数人无法接触到国外优秀的著作和文学作品。
以大语言模型为代表的机器翻译技术的突飞猛进。诸多学科领域产生了首个拐点,对于翻译学科而言,AI 改变了翻译的逻辑,翻译的主要工作演变成译后编辑。人机交互的翻译方法成为常态。
AI技术大幅度地提升了翻译的i效率。并且翻译的准确率,可读性已经逐步接近人工翻译的水平。与此同时,语音即时翻译也达到了同声翻译的水平。
AI 技术的广泛应用显著提高了翻译的效率和质量,并极大地拓展了翻译的应用场景。
这一变革不仅满足了日益增长的翻译需求,还推动了应用翻译研究领域的兴起。应用翻译研究的关照焦点之一是解决实际场景中的翻译问题,如商务、科技、医疗和法律领域的翻译。尽管大型语言模型如 ChatGPT 并非专门为翻译而设计,但其技术已经相当领先,能够生成与市场上的专业翻译系统如谷歌翻译和 DeepL)相媲美甚至更好的翻译结果。特别是在应用翻译领域。
大型语言模型的表现非常出色。给我们带来的冲击是巨大。我们能够比历史上任何一个时期都更快和更多地翻译世界各国的著作。消除语言的障碍,全面地学习和了解世界。AI将会带来百家争鸣,百花齐放的繁荣景象。
教育
作为传授知识为目的的教育领域是重要的AI 应用场景。具体地可以分为:
面向现有的教育体系
改变现有的教育体系是困难的。但是利用AI 技术提升目前教育中的效率是可能的。AI 大模型可以成为:
- 大百科全书-能回答学生的各种问题,包括课外知识。
- 辅导老师-能够承担家庭作业的辅导工作
- 个性化检查-针对性出题,检查
多模态大模型的日渐成熟,辅导学生的课外作业,个性化出题,加分练习这些迎合考试提分的教育技术将会形成规模。
创造新的教育方法
上面提及的技术只会加剧内卷。对提升下一代人的技能没有多少帮助。AI 时代对就业者的要求将会发生改变,教育也应该随之改变。传统的知识传授不在重要,关键是目标的选择和创新性思维。
在世界经济论坛中,提出了教育4.0的概念,人们认为未来学生就业需要具备三种技能:
解决问题的能力
善于解决问题的学生会带着好奇心去解决问题,并随时准备迎接眼前的挑战。学生们可以独立或与他人合作,研究情况并提出问题以找出问题的根本原因;在查明原因后,共同集思广益,寻找潜在的解决方案;在小范围内进行实验和测试,回顾测试结果;逐步扩展最佳解决方案,并持续监控解决方案,以确保其真正解决问题。在此过程中,学生们构建并依赖解决问题的基石:创造力、数据分析能力、毅力和批判性思维。
协作能力
协作的核心在于与他人良好合作,有时作为团队领导者,有时作为团队成员。善于协作的学生能够运用优质数据和有效说服力,并受其影响。当面对与其最初信念相反的证据时,他们愿意改变想法。高效的协作者能够与各种性格类型、工作风格和背景的人建立良好关系,并迅速采取行动缓解团队内部的紧张局势并解决冲突。此外,他们善于沟通,无论是面对面交流、通过摄像头、通过音频、以任何形式进行沟通,还是积极倾听。
适应能力
长期以来,持续适应新情况和新现实的能力一直被低估,因为“适应性”本身就难以定义。适应性技能涵盖了从对不确定性、突如其来的变化和陌生环境的一定程度的适应能力,到在压力下做出有效决策和开发创新解决方案的能力。适应性强的年轻人能够无缝地从跟随者转变为领导者,然后再转变为领导者。他们乐于接受学习新知识、掌握新技能和自我测试的机会。
消除人类与机器的语言边界
长期以来,机器语言和人类自然语言是不同的。机器语言严格定义了语法,语义。并且适合计算机高效率的处理。机器语言是结构化语言(structure language) ,而人类自然语言是非结构化语言(unstructure language)。AI 大语言模型处理非结构化语言的能力非常强大。
自动生成程序代码和结构化数据
对于大语言模型而言,机器代码相比自然语言而言,简直是小菜一碟。AI 生成计算机代码更容易。现在大模型生成计算机前端,python ,javascript 程序的准确性已经非常高。 同样地,程序员的工作主要转变为提出需求,检查和debug 任务。逐条写代码的工作将越来越少。
理解非结构化信息的能力
大语言模型能够比较准确地理解自然语言。并且通过Function Call 和MCP 等机制访问和控制原有的信息系统和物联网系统。智能玩具,设备的语音控制变得易如反掌。
非结构化信息转换成结构化信息
尽管AI 能够理解和处理非结构信息,但是,机器处理结构化数据的效率更高,为了提高信息处理的效率,需要批量地将非结构化数据转换成为标准的结构化信息。
通过大语言模型“蒸馏”结构化信息
大语言模型可以生成机器可读的结构化信息。例如各种事物的信息模型,产品的属性,规格书。这些结构化信息需要通过人工编制的。大模型的出现将使ecl@ss等产品信息标准构建工作效率大幅度提高。
也谈AI 的落地场景
最后,我们也来谈谈AI 的落地场景的问题。
碎片化的大模型应用场景
大语言模型就像钢笔,橡皮,字典类似,是一个万能文具盒,而使用这个工具盒的场景是碎片化的。到处可以应用,却没有重磅的应用场景。将诸多的小应用组合成为AI 的“瑞士军刀”,各种通用超级的Agent 。并没有足够的吸引力让用户付费。寻找大模型落地场景的人们就像儿童在夏天等台风来,它却一直没来。
大模型就像基础设施一样,它的盈利模型只能像电信服务那样收费。现在的情形类似于互联网的早期阶段。人们总是希望成为第三方互联网接入服务商。结果都没有成功,而开发互联网应用的公司却赚的盆满钵满。今天,我们要吸取互联网时代的教训。
同样的,期望构造垂直大模型的取得差异化竞争优势努力也可能是徒劳的。除非你能持续地获得大量的数据集。不然的话很可能被通用大模型替代。通过“蒸馏”的方式也可能被其它大模型截取。
不必过于担心
网络上不断地传来骇人听闻的消息,下一代chatGPT 的推理能力大增,完全超越人类等等。于是惊恐人类将被AI 取代。在我看来,AI 的推理能力是基于已知的规律,常识和事实推导出结果。推理能力只是人类智慧的一部分,人类的大脑还具备强大的“涌现”能力。它能过创新性思维。在一个晴朗的早晨,突然涌现了一个想法。这是人类智慧神秘的特质。至少到目前为止,我没有看见AI具备涌现创新思想的能力。
实现无法做成的事情
面对AI,我们大多数人应该思考的问题是,它给我们带来了什么?我们能否利用它实现一些过去无法做到的事情。
- AI时代的翻译热潮
AI 使翻译的成本大幅度下降,大批量翻译国外优秀的著作和影视作品将使人们能消除语言的隔阂,更加全面,准确地了解世界。有助于丰富人们的文化生活,提高国民的教育水平。配合合适的商业模型,将会形成AI时代的翻译热潮。
翻译的作品将包括:
- 国外的优秀著作
- 播客
- 电影
- 影视作品
全世界有多少书籍,准确地统计出这个数字并不是容易的事情,2010年,Goolge 估算为129,864,880本书。ISBNDB 的统计,截止2023 年,全世界大约有 158,464,880本书(1.58亿),每年出版220万本书。
截至2023年,中国国家图书馆(北京)的藏书量超过 4400万册,其中中文图书占主要部分。2022年全国出版 新书 约 21万种,感觉中文占世界书籍的10%左右。
人均寿命为79岁,这意味着为了读完现在世界上所有的书(甚至不包括即将出版的新书),你每年必须读大约1,721,519本书。也就是说,你每天必须读4,716本书,才有可能读完现在世界上所有的书。
- 构建结构化信息模型
传统的信息系统擅长处理语法/语义严格定义的数据,这些数据采取XML,JSON 格式定义,为了实现数据的共享,对数据格式和交互协议制定了各种标准。标准化的数据对于需要确定性数据的领域十分重要(例如制造领域)。目前主要依靠人工编制标准化数据。现在可以借助AI 来高效率的生成这些数据。至少可以使用大语言模型形成初稿,而人工进行校正和修改。在这方面,我们做了一些尝试。比如自动生成GS1 商品属性,从Datasheet 提取产品的属性等。笔者相信,利用AI 生成工业4.0 中AAS,ecl@ss,OPCUA ,PASSPORT数据模型可行的。
- 为AI 提供支撑环境
尽管AI时代看上去岁月静好,其实背后依然依靠信息系统负重前行。没有基础的信息服务,AI 也只能是一位耍嘴皮子的墨客文人。大多数从事信息服务的机构仍然大有可为。如何与大语言模型有效的对接是目前重要的课题。主要包括:
- API化与有偿服务
基于互联网的信息系统是面向人类阅读的,普遍采取了前后端技术。前端实现人机界面(UI),并通过API 调用后端系统。后端包括了各种信息服务,例如数据库系统。AI 逐步取代前端UI,成为新一代人机交互方式。要求后端系统采取更加开放的API ,比如最近热起来的MCP,也是一种API。另一方面,在AI 时代,难以通过广告来支撑互联网时代的免费模式。收费式信息服务将会增加。例如,目前专业的搜索引擎就是付费方式的。关于收费服务,国内用户接受程度要低一点,但是这将成为趋势。可以开放各种高附加值的增值服务。
- 推荐系统
目前电商平台的推荐技术仍然基于传统的推荐算法。客户体验并不好。比如某买书网站。无论什么人进入主页,都推荐的是儿童读物,教材。其实销售图书的网站是最容易通过个人的购买历史和注意力,推荐匹配的图书的。其它电商也普遍存在这样的问题,一不小心就迷失了方向。
AI推荐系统的两大核心是算法和商品描述。商品描述不规范,准确也难以实现精准推荐算法。而智能推荐算法与商品描述的规范是AI 的强项。
- 数据即服务(data as Service)
为AI 构建各种高质量的数据服务,例如商品主数据,智慧城市数据服务。目的是为AI 提供实时更新的,确定性的数据服务。所以过去面向人的信息服务都需要为AI 改变。商业模式也可能随之改变。当我们被AI取代而失业之前,还有许多事情等着我们去做。
- 为AI 提供“健康食品”
现在别指望AI 能够为你提供多少高质量的内容,特别是通过搜索引擎获得的信息, 互联网内容的质量低下,令人堪忧。为AI 提供优质数据源,“健康食品”。比如,构建高质量数据库,清洗原有的数据集。
创投界的大佬说,只有脏活苦活才能挣到钱。我这里列举的都是脏活苦活。不过,要找到一个能够月结工钱的脏话苦活却不容易。大家费劲找找吧!